1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*
* probplot.c - routines used for probability plots
*
* Author: Sean Casey
* Modified 6/93 by Kenny Toh
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define ERRORRETURN -9.0e30
#define MAXITER 3000
#ifndef EXIT_FAILURE
# define EXIT_FAILURE 1
# define EXIT_SUCCESS 0
#endif
#ifndef FLT_EPSILON
# define FLT_EPSILON 1e-7
#endif
/* Local procedure declarations */
double CNnorm_vert_distance();
#ifdef TEST
static void calc_prob_axes();
#endif
/*
*
* double CNnorm_vert_distance(p, rc)
* Function to return the vertical distance on a probability plot given
* a fraction between 0 and 1.
* No allocated memory.
*
* This returns a value between -5 and +5. If x=0.5 (50%), f(x)=0
*/
double CNnorm_vert_distance(p, rc)
double p; /* Fraction between 0 and 1 */
int *rc; /* Return code, gets EXIT_SUCCESS for successful termination */
{
/* Simple Newton's method plus bisection. */
/* Taylored specifically to this application. */
double fb = 0, fu, fv;
double b, u, v;
double sqrt2, derivative, step;
int count = 2, nbis = 25, debug = 0;
*rc = EXIT_FAILURE;
sqrt2 = sqrt(2.0);
#ifdef DEBUG
debug = 1;
#endif
u = -5.0; /* Upper and lower limits on solution. */
v = 5.0; /* These will reach alomost to 1 */
fu = .5 * ( erf( u / sqrt2 ) + 1) - p;
fv = .5 * ( erf( v / sqrt2 ) + 1) - p;
if (fu * fv > 0 ) {
*rc = EXIT_FAILURE;
return(ERRORRETURN);
}
step = v - u;
for ( count = 0; count <= MAXITER; count++) {
if ( count % nbis == 0 ) {
b = u + (v - u) / 2; /* Bisect the interval. */
if (debug)
(void) printf("Bisect\n");
} else {
derivative = ( 1 / ( sqrt2 * sqrt(M_PI) * exp(b * b / 2) ) );
if (debug)
(void) printf(
"Derivative f'(b) = f'(%-8f) = %-10f step=%-10f ",
b, derivative, fb / derivative);
step = fb / derivative;
b -= fb / derivative ;
if (debug)
(void) printf("new b=%-10f\n", b);
if (b < u || b > v) {
if (debug)
(void) printf("b = %-10f Out of bounds. Bisect.\n", b);
b = u + (v - u) / 2; /* Bisect the interval. */
}
}
fb = .5 * ( erf( b / sqrt2 ) + 1 ) - p;
if (fb * fu > 0) {
fu = fb;
u = b;
} else {
fv = fb;
v = b;
}
if (debug)
(void) printf(
"count=%d b=%f fb=%-10f u=%-10f v=%-10f (u-v)=%-10f\n",
count, b, fb, u, v, u - v);
if ( fabs(v - u) <= FLT_EPSILON || fabs(step) <= FLT_EPSILON ) {
*rc = EXIT_SUCCESS;
return b;
}
}
*rc = EXIT_FAILURE;
return(ERRORRETURN);
}
#ifdef TEST
/*
* Figure out the position of the axes and tickmarks
*/
static void calc_prob_axes()
{
/*
* Figure out the axis position (0-1) for x=0.0001, 0.001, 0.01, 0.1,
* 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.9999
*
* x=0.0001 => 0
* x=0.9999 => 1
*/
double upper_lim, lower_lim;
double x, y, Y, delta;
int i,j;
int error;
/*
* lower_lim => 0 upper_lim => 1
* (y-0)/(1-0) = (Y-lower_lim)/(upper_lim-lower_lim)
*/
lower_lim = CNnorm_vert_distance(0.0001, &error);
upper_lim = CNnorm_vert_distance(0.9999, &error);
/* Calculate axes from 0.0001 (0.01%) to 0.10 (10%) */
delta = 0.0001;
for (j=0; j<3; j++) {
x = delta;
for (i=0; i<10; i++) {
Y = CNnorm_vert_distance(x, &error);
y = 100*(Y - lower_lim)/(upper_lim - lower_lim);
(void) printf("%s x=%10.5f y=%10.5f\n",(i==0 ? "M" : " "),x,y);
x += delta;
}
delta = delta*10.0;
(void) printf("\n");
}
/* Calculate axes from 0.1 (10%) to 0.9 (90%) */
delta = 0.01;
for (j=1; j<9; j++) {
x = 0.1*j;
for (i=0; i<10; i++) {
Y = CNnorm_vert_distance(x, &error);
y = 100*(Y - lower_lim)/(upper_lim - lower_lim);
(void) printf("%s x=%10.5f y=%10.5f\n",(i==0 ? "M" : " "),x,y);
x += delta;
}
(void) printf("\n");
}
/* Calculate axes from 0.9 (90%) to 0.9999 */
delta = 0.01;
for (j=0; j<3; j++) {
x = 1.0 - 10.0*delta;
for (i=0; i<10; i++) {
Y = CNnorm_vert_distance(x, &error);
y = 100*(Y - lower_lim)/(upper_lim - lower_lim);
(void) printf("%s x=%10.5f y=%10.5f\n",(i==0 ? "M" : " "),x,y);
x += delta;
}
delta = delta*0.10;
(void) printf("\n");
}
}
main(argc, argv)
int argc;
char *argv[];
{
int rc, n, i;
if (argc < 2) {
(void) printf("To test, type a.out <fraction value>, e.g., a.out .6\n");
(void) printf("To test, type a.out <fraction value> <integer value>, e.g., a.out .6 10 \n");
exit(1);
}
(void) printf("Input=%f verticalDistance=%g\n", atof(argv[1]), CNnorm_vert_distance( atof(argv[1]) , &rc ) );
if (rc == 0)
(void) printf("SUCCESS\n");
else
(void) printf("FAILURE\n");
if (argc > 2) {
n = atoi(argv[2]);
for (i = 1; i <= n; i++) {
(void) printf("%-10f verticalDistance=%-10f\n",
(2.0 * i - 1.0) / (2.0 * n),
CNnorm_vert_distance( (2.0 * i -1.0) / (2.0 * n), &rc));
if (rc != 0)
(void) printf("FAILURE\n");
}
}
/* Test the axes routine */
calc_prob_axes();
exit(0);
}
#endif
|