1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*
* grid.c - procedures to build and maintain a volumetric grid
* data structure
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include "CNplot.h"
static double get_1D_double_array_value();
/*
* SLICE DATA STRUCTURE
* A slice is used to store data derived from a slice of a volumetric
* grid. The slice information, on an orthogonal plane, is stored
* in rectangles, points and nodes.
*/
CNsliceptr CNmake_slice()
{
CNsliceptr newptr;
unsigned int size = sizeof(CNslice);
if ((newptr = (CNsliceptr)malloc(size))!=NULL) {
/* Slice Information */
newptr->slice_plane = CN_NSLICE;
newptr->slice_value = 0.0;
/* Values */
newptr->xmin = 0.0;
newptr->xmax = 0.0;
newptr->ymin = 0.0;
newptr->ymax = 0.0;
newptr->zmin = 0.0;
newptr->zmax = 0.0;
newptr->tmin = 0.0;
newptr->tmax = 0.0;
/* For making contour datasets */
newptr->xarray = NULL;
newptr->yarray = NULL;
newptr->zarray = NULL;
newptr->nx = 0;
newptr->ny = 0;
newptr->nz = 0;
/* Linked lists */
newptr->pointhead = NULL;
newptr->pointtail = NULL;
newptr->nodehead = NULL;
newptr->nodetail = NULL;
newptr->triahead = NULL;
newptr->triatail = NULL;
newptr->recthead = NULL;
newptr->recttail = NULL;
}
return(newptr);
}
/*
* Delete slice
*/
void CNdelete_slice(Sptr)
CNsliceptr Sptr;
{
/* Free the arrays */
if (Sptr->xarray) free((char *)Sptr->xarray);
if (Sptr->yarray) free((char *)Sptr->yarray);
if (Sptr->zarray) free((char *)Sptr->zarray);
/* Reset the array counts */
Sptr->nx = 0;
Sptr->ny = 0;
Sptr->nz = 0;
/* delete all the rectangles in Sptr */
CNdelete_rect_list(&(Sptr->recthead),&(Sptr->recttail));
/* delete all the triangles in Sptr */
CNdelete_tria_list(&(Sptr->triahead),&(Sptr->triatail));
/* delete all the nodes in Dptr */
CNdelete_node_list(&(Sptr->nodehead),&(Sptr->nodetail));
/* delete all the points in Dptr */
CNdelete_point_list(&(Sptr->pointhead),&(Sptr->pointtail));
/* Now delete Sptr */
free ((char*)Sptr);
}
/*
* Print info on the slice
*/
void CNprint_slice(Sptr)
CNsliceptr Sptr;
{
int npoints, nnodes, ntrias, nrects;
(void) fprintf(stdout,"Slice Plane: %s\n",CNsliceplane(Sptr->slice_plane));
(void) fprintf(stdout,"Slice Value: %g\n",Sptr->slice_value);
/* Count the contents of the slice */
npoints = CNcount_points(Sptr->pointhead,Sptr->pointtail);
nnodes = CNcount_nodes (Sptr->nodehead, Sptr->nodetail );
ntrias = CNcount_trias (Sptr->triahead, Sptr->triatail );
nrects = CNcount_rects (Sptr->recthead, Sptr->recttail );
/* Print the contents of the slice */
(void) fprintf(stdout," No of points = %d\n", npoints);
(void) fprintf(stdout," No of nodes = %d\n", nnodes);
(void) fprintf(stdout," No of trias = %d\n", ntrias);
(void) fprintf(stdout," No of rects = %d\n", nrects);
}
/*
* Return a string denoting the plot-type
*/
char *CNsliceplane(sliceplane)
int sliceplane;
{
char *data;
switch (sliceplane) {
case CN_NSLICE : data = "No Slice"; break;
case CN_XSLICE : data = "X Slice"; break;
case CN_YSLICE : data = "Y Slice"; break;
case CN_ZSLICE : data = "Z Slice"; break;
default : data = "No Slice"; break;
}
return(data);
}
/*
* GRID DATA STRUCTURE
* A grid is used to store single-valued data on a volumetric grid.
* The data is represented in the form of arrays.
*/
/*
* Allocate room for a grid4D data structure
*/
CNgrid4Dptr CNmake_grid4D(ID)
int ID;
{
CNgrid4Dptr newptr;
unsigned int size = sizeof(CNgrid4D);
if ((newptr = (CNgrid4Dptr)malloc(size))!=NULL) {
newptr->ID = ID;
newptr->flag = 0;
newptr->xarray = NULL;
newptr->yarray = NULL;
newptr->zarray = NULL;
newptr->tarray = NULL;
newptr->nx = 0;
newptr->ny = 0;
newptr->nz = 0;
newptr->nt = 0;
newptr->xmin = 0.0;
newptr->xmax = 0.0;
newptr->ymin = 0.0;
newptr->ymax = 0.0;
newptr->zmin = 0.0;
newptr->zmax = 0.0;
newptr->tmin = 0.0;
newptr->tmax = 0.0;
newptr->slice = NULL;
}
return(newptr);
}
/*
* Delete grid4D
*/
void CNdelete_grid4D(Gptr)
CNgrid4Dptr Gptr;
{
/* Free the slice */
if (Gptr->slice != NULL) CNdelete_slice(Gptr->slice);
/* Free the arrays */
if (Gptr->xarray) free((char *)Gptr->xarray);
if (Gptr->yarray) free((char *)Gptr->yarray);
if (Gptr->zarray) free((char *)Gptr->zarray);
if (Gptr->tarray) free((char *)Gptr->tarray);
/* Reset the array counts */
Gptr->nx = 0;
Gptr->ny = 0;
Gptr->nz = 0;
Gptr->nt = 0;
/* Now delete Gptr */
free ((char*)Gptr);
}
/*
* Retrieve data from the grid
*/
/* x-value */
double CNgrid4D_x(Gptr,i)
CNgrid4Dptr Gptr;
int i;
{
double val;
val = get_1D_double_array_value(Gptr->xarray,i,Gptr->nx);
return(val);
}
/* y-value */
double CNgrid4D_y(Gptr,i)
CNgrid4Dptr Gptr;
int i;
{
double val;
val = get_1D_double_array_value(Gptr->yarray,i,Gptr->ny);
return(val);
}
/* z-value */
double CNgrid4D_z(Gptr,i)
CNgrid4Dptr Gptr;
int i;
{
double val;
val = get_1D_double_array_value(Gptr->zarray,i,Gptr->nz);
return(val);
}
/* t-value */
double CNgrid4D_t(Gptr,i,j,k)
CNgrid4Dptr Gptr;
int i,j,k;
{
double val;
int t;
t = i + j*Gptr->nx + k*Gptr->nx*Gptr->ny;
val = get_1D_double_array_value(Gptr->tarray,t,Gptr->nt);
return(val);
}
/*
* Print info on the grid4D
*/
void CNprint_grid4D(Gptr)
CNgrid4Dptr Gptr;
{
int i,j,k,i0,j0,k0;
(void) fprintf(stdout,"Grid %d:\n",Gptr->ID);
(void) fprintf(stdout," x[0] = %8.3g x[%5d] = %8.3g\n",
CNgrid4D_x(Gptr,0),
Gptr->nx-1,
CNgrid4D_x(Gptr,Gptr->nx-1));
(void) fprintf(stdout," y[0] = %8.3g y[%5d] = %8.3g\n",
CNgrid4D_y(Gptr,0),
Gptr->ny-1,
CNgrid4D_y(Gptr,Gptr->ny-1));
(void) fprintf(stdout," z[0] = %8.3g z[%5d] = %8.3g\n",
CNgrid4D_z(Gptr,0),
Gptr->nz-1,
CNgrid4D_z(Gptr,Gptr->nz-1));
for (k=0; k<2; k++)
for (i=0; i<2; i++)
for (j=0; j<2; j++) {
i0 = i*(Gptr->nx-1);
j0 = j*(Gptr->ny-1);
k0 = k*(Gptr->nz-1);
(void) fprintf(stdout," t[%2d][%2d][%2d] = %8.3g\n",
i0, j0, k0, CNgrid4D_t(Gptr,i0, j0, k0));
}
/* Print slice info */
if (Gptr->slice) CNprint_slice(Gptr->slice);
}
/*
* Array routines
*/
/*
* get the value of an array element
*/
static double get_1D_double_array_value(arrptr,i,isize)
double *arrptr;
int i,isize;
{
double val;
if (i<0 || i>=isize) {
(void) fprintf(stderr,"Element [%d] is out of bounds!\n",i);
return(0.0);
}
val = *(arrptr + i);
return(val);
}
|