File: intersect.c

package info (click to toggle)
plotmtv 1.4.4t-6
  • links: PTS
  • area: main
  • in suites: woody
  • size: 5,964 kB
  • ctags: 5,420
  • sloc: ansic: 55,108; makefile: 1,995; fortran: 1,277; sh: 510; csh: 439
file content (544 lines) | stat: -rw-r--r-- 17,608 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * intersect.c 
 *    Find intersections of objects based on segment-plane intersections
 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CNdata.h"
#include "CNproperty.h"
#include "CNdatatypes.h"
#include "CNintersect.h"

/*

static void test_rect_intsct();
static void test_tria_intsct();
static void test_line_intsct();

main()
{
   test_rect_intsct();
}

static void test_rect_intsct()
{
   CNpoint  pta, ptb, ptc, ptd;
   CNpoint  points[10];
   int      npts;
   double   a, b, c, d;
   int      intsct, i;

   pta.x = 0.0; pta.y = 0.0; pta.z = 1.0;
   ptb.x = 1.0; ptb.y = 0.0; ptb.z = 0.0;
   ptc.x = 1.0; ptc.y = 1.0; ptc.z = 1.0;
   ptd.x = 0.0; ptd.y = 1.0; ptd.z = 0.0;

   (void) fprintf(stdout,"\nEnter the equation of the plane: (ax+by+cz=d)\n");
   (void) fprintf(stdout,"   a ="); scanf("%lf",&a);
   (void) fprintf(stdout,"   b ="); scanf("%lf",&b);
   (void) fprintf(stdout,"   c ="); scanf("%lf",&c);
   (void) fprintf(stdout,"   d ="); scanf("%lf",&d); d = -1.0*d;
   (void) fprintf(stdout,"The plane equation is : %g*x + %g*y + %g*z = %g\n",a,b,c,-d);

   intsct = CNpoly4_intsct_plane(a, b, c, d, &pta, &ptb, &ptc, &ptd, 
                                 points, &npts, 1);

   (void) fprintf(stdout,"\nNo of intersections = %d  No of segment pairs = %d\n",npts,npts/2);
   for (i=0; i<npts; i++)
      (void) fprintf(stdout,"pt %d = (%10.5f  %10.5f  %10.5f)\n",
          i, points[i].x, points[i].y, points[i].z);
}

static void test_tria_intsct()
{
   CNpoint  pta, ptb, ptc;
   CNpoint  pt1, pt2;
   double   a, b, c, d;
   int      intsct;

   pta.x = 0.0; pta.y = 0.0; pta.z = 1.0;
   ptb.x = 1.0; ptb.y = 0.0; ptb.z = 1.0;
   ptc.x = 1.0; ptc.y = 1.0; ptc.z = 1.0;

   (void) fprintf(stdout,"\nEnter the equation of the plane: (ax+by+cz=d)\n");
   (void) fprintf(stdout,"   a ="); scanf("%lf",&a);
   (void) fprintf(stdout,"   b ="); scanf("%lf",&b);
   (void) fprintf(stdout,"   c ="); scanf("%lf",&c);
   (void) fprintf(stdout,"   d ="); scanf("%lf",&d); d = -1.0*d;
   (void) fprintf(stdout,"The plane equation is : %g*x + %g*y + %g*z = %g\n",a,b,c,-d);

   intsct = CNpoly3_intsct_plane(a, b, c, d, &pta, &ptb, &ptc, &pt1, &pt2, 1);

   if (intsct) {
      (void) fprintf(stdout,"Found intersection\n");
      (void) fprintf(stdout,"pt1 = (%10.5f  %10.5f  %10.5f)\n", pt1.x, pt1.y, pt1.z);
      (void) fprintf(stdout,"pt2 = (%10.5f  %10.5f  %10.5f)\n", pt2.x, pt2.y, pt2.z);
   }
}


static void test_line_intsct()
{
   CNpoint  pta, ptb, ptc;
   double   a, b, c, d;
   int      intsct;

   pta.x = 1.0; pta.y = 1.0; pta.z = 1.0;
   ptb.x = 0.0; ptb.y = 0.0; ptb.z = 0.0;
   ptc.x = 0.0; ptc.y = 0.0; ptc.z = 0.0;

   (void) fprintf(stdout,"\nEnter the equation of the plane: (ax+by+cz=d)\n");
   (void) fprintf(stdout,"   a ="); scanf("%lf",&a);
   (void) fprintf(stdout,"   b ="); scanf("%lf",&b);
   (void) fprintf(stdout,"   c ="); scanf("%lf",&c);
   (void) fprintf(stdout,"   d ="); scanf("%lf",&d);
   (void) fprintf(stdout,"The plane equation is : %g*x + %g*y + %g*z = %g\n",a,b,c,d);

   intsct = CNline_intsct_plane(a, b, c, -d, &pta, &ptb, &ptc);

   (void) fprintf(stdout,"pta = (%10.5f  %10.5f  %10.5f)\n",pta.x, pta.y, pta.z);
   (void) fprintf(stdout,"ptb = (%10.5f  %10.5f  %10.5f)\n",ptb.x, ptb.y, ptb.z);
   (void) fprintf(stdout,"ptc = (%10.5f  %10.5f  %10.5f)\n",ptc.x, ptc.y, ptc.z);
   (void) fprintf(stdout,"%s\n",(intsct) ? "Found Intersection" : "No Intersection");
}
*/


/*
 * Find the intersection between a rectangle and a plane 
 * 4 vertices are specified:                           v1----v2
 *    Assume that 4 vertices are sequential, i.e.       |    |
 *                                                     v4----v3
 */
int CNpoly4_intsct_plane(a,b,c,d,pta,ptb,ptc,ptd,intpt,npts,verbose)
double   a, b, c, d;               /* The equation of the plane */
CNpoint  *pta, *ptb, *ptc, *ptd;   /* Rectangle vertices        */
CNpoint  intpt[];                  /* Intersection coords       */
int      *npts;                    /* Number of intersections   */
int      verbose;                  /* Verbosity flag for debug  */
{
   CNpoint  pt1, pt2, pt3, pt4, point[4];
   double   d1, d2, d3, d4;
   int      in1, in2, in3, in4, nint;
   int      intsct = CN_FALSE;
   int      lg01, lg12, lg20;
   int      i = 0;

   /* Initialize */
   *npts = 0;

   /* Double-check plane equation */
   if ((fabs(a)<CN_SMALLER) && (fabs(b)<CN_SMALLER) && (fabs(c)<CN_SMALLER)) {
      (void) fprintf(stderr,"The plane is undefined! ");
      (void) fprintf(stderr,"Plane equation: %gx + %gy + %gz = %g\n",a,b,c,-d);
      return(intsct);
   }

   /* Normalize the plane equation */
   CNnormalize_plane(&a,&b,&c,&d);

   /* Check the rectangle first using plane equation : ax + by + cz + d = 0 */
   d1 = -1.0 * ( a * pta->x + b * pta->y + c * pta->z);
   d2 = -1.0 * ( a * ptb->x + b * ptb->y + c * ptb->z);
   d3 = -1.0 * ( a * ptc->x + b * ptc->y + c * ptc->z);
   d4 = -1.0 * ( a * ptd->x + b * ptd->y + c * ptd->z);

   /*
    * if d1, d2, d3, d4 all greater or all less than d0, then no intsct
    * If the rectangle is underneath the plane and touches the plane then count
    *    as no intersection.
    * If the rectangle is above the plane and touches the plane then count
    *    as an intersection.
    * This avoids double-intersections if the plane is coincident with an
    * edge of the rectangle.
    */
   if ( (fabs(d-d1)<CN_SMALLER) && (fabs(d-d2)<CN_SMALLER) &&
        (fabs(d-d3)<CN_SMALLER) && (fabs(d-d4)<CN_SMALLER) ){
      /* Rectangle is on the plane */
      if (verbose) (void) fprintf(stdout,"Plane is parallel to rectangle\n");
      intsct = CN_FALSE;
      return(intsct); 

   } else if ( ((d1 >= d ) && (d2 >= d) && (d3 >= d) && (d4 >= d)) ||
               ((d1 <  d ) && (d2 <  d) && (d3 <  d) && (d4 <  d)) ) {
      /* Rectangle has points all on one side of plane */
      intsct = CN_FALSE;
      return(intsct);
   }
      
   /* Find intersections of line-segments */
   in1 = CNline_intsct_plane(a, b, c, d, pta, ptb, &pt1);
   in2 = CNline_intsct_plane(a, b, c, d, ptc, ptb, &pt2);
   in3 = CNline_intsct_plane(a, b, c, d, ptc, ptd, &pt3);
   in4 = CNline_intsct_plane(a, b, c, d, pta, ptd, &pt4);
   if (in1) point[i++]=pt1;
   if (in2) point[i++]=pt2;
   if (in3) point[i++]=pt3;
   if (in4) point[i++]=pt4;
   nint = in1 + in2 + in3 + in4;

   /* Print intersection info */
   if (verbose) {
      (void) fprintf(stdout,"%d intersections\n",nint);
      for (i=0; i<nint; i++)
         (void) fprintf(stdout,"Intersection #%d : (%10.5f %10.5f %10.5f)\n",
                 i,point[i].x,point[i].y,point[i].z);
   }

   /* There can be 0 to 4 intersections */
   if (nint == 1) {
      /* 
       * One intersection - must be floating point error where
       * the plane is at the tip of a vertice   
       */
      intsct = CN_FALSE;
   } else if (nint == 2) {
      /* 
       * Two intersections - just return 2 
       */
      intpt[0] = point[0];   
      intpt[1] = point[1];   
      *npts    = 2;
      intsct   = CN_TRUE;
   } else if (nint == 3) {
      /* 
       * Three intersections - check the distance between intersections
       * to screen out floating-point-error.
       * Possible that 3 points are on the plane...
       */
      lg01 = CNlongline(&(point[0]),&(point[1]),1.0e-5);
      lg12 = CNlongline(&(point[1]),&(point[2]),1.0e-5);
      lg20 = CNlongline(&(point[2]),&(point[0]),1.0e-5);
      /* If there are 3 long-lines add all 3 to the list */
      if (lg01 && lg12 && lg20) {
         if (lg01) {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[1];
         }
         if (lg12) {
            intpt[(*npts)++] = point[1];
            intpt[(*npts)++] = point[2];
         }
         if (lg20) {
            intpt[(*npts)++] = point[2];
            intpt[(*npts)++] = point[0];
         }
      } else if (!lg01) {
         /* pt0 = pt1, ln12 = ln20 */
         if (lg12) {
            intpt[(*npts)++] = point[1];
            intpt[(*npts)++] = point[2];
         }
      } else if (!lg12) { 
         /* pt1 = pt2, ln01 = ln20 */
         if (lg01) {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[1];
         }
      } else if (!lg20) { 
         /* pt0 = pt2, ln01 = ln21 */
         if (lg01) {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[1];
         }
      }
      if ((*npts)>0) intsct = CN_TRUE;
   } else if (nint == 4) {
      /*
       * Four intersections - match up pairs based on whether the
       * vertice in between 2 intersections is high or low.
       *
       * There is a possibility that some points are the same due to
       * floating-point error - handle these cases too       
       */
      
      /*
      if (d1 > d) {
       */
      if (d1 < d) {
         /* Pairs are (p1,p2) (p3,p4) */
         if (CNlongline(&pt1,&pt2,1.0e-5) && CNlongline(&pt3,&pt4,1.0e-5)) {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[1];
            intpt[(*npts)++] = point[2];
            intpt[(*npts)++] = point[3];
         } else {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[2];
         }
      } else { 
         /* Pairs are (p1,p4) (p2,p3) */
         if (CNlongline(&pt1,&pt4,1.0e-5) && CNlongline(&pt2,&pt3,1.0e-5)) {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[3];
            intpt[(*npts)++] = point[1];
            intpt[(*npts)++] = point[2];
         } else {
            intpt[(*npts)++] = point[0];
            intpt[(*npts)++] = point[1];
         }
      }
      intsct = CN_TRUE; 
   } else {
      /*
       * Zero or non-valid no of intersections
       */
      intsct = CN_FALSE;
   } 

   /* Return status */
   return(intsct);
}
   

/*
 * Find the intersection between a triangle and a plane 
 */
int CNpoly3_intsct_plane(a,b,c,d,pta,ptb,ptc,ptmin,ptmax,verbose)
double   a, b, c, d;               /* The equation of the plane */
CNpoint  *pta, *ptb, *ptc;         /* Triangle vertices         */
CNpoint  *ptmin, *ptmax;           /* Intersections             */
int      verbose;                  /* Verbosity flag for debug  */
{
   CNpoint  pt1, pt2, pt3, point[3];
   double   d1, d2, d3;
   int      in1, in2, in3, nint;
   int      intsct = CN_FALSE;
   int      i = 0;

   /* Double-check plane equation */
   if ((fabs(a)<CN_SMALLER) && (fabs(b)<CN_SMALLER) && (fabs(c)<CN_SMALLER)) {
      (void) fprintf(stderr,"The plane is undefined! ");
      (void) fprintf(stderr,"Plane equation: %gx + %gy + %gz = %g\n",a,b,c,-d);
      return(intsct);
   }

   /* Normalize the plane equation */
   CNnormalize_plane(&a,&b,&c,&d);

   /* Check the triangle first using plane equation : ax + by + cz + d = 0 */
   d1 = -1.0 * ( a * pta->x + b * pta->y + c * pta->z);
   d2 = -1.0 * ( a * ptb->x + b * ptb->y + c * ptb->z);
   d3 = -1.0 * ( a * ptc->x + b * ptc->y + c * ptc->z);

   /*
    * if d1, d2, d3 all greater or all less than d0, then no intsct
    * If the triangle is underneath the plane and touches the plane then count
    *    as no intersection.
    * If the triangle is above the plane and touches the plane then count
    *    as an intersection.
    * This avoids double-intersections if the plane is coincident with an
    * edge of the triangle.
    */
   if ( (fabs(d-d1)<CN_SMALLER) && 
        (fabs(d-d2)<CN_SMALLER) &&
        (fabs(d-d3)<CN_SMALLER) ){
      /* Tria is on the plane */
      if (verbose) (void) fprintf(stdout,"Plane is parallel to triangle\n");
      intsct = CN_FALSE;
      return(intsct); 

   } else if ( ((d1 >= d ) && (d2 >= d) && (d3 >= d)) ||
               ((d1 <  d ) && (d2 <  d) && (d3 <  d)) ) {
      /* Tria has points all on one side of plane */
      intsct = CN_FALSE;
      return(intsct);

   }
      
   /* Find intersections of line-segments */
   in1 = CNline_intsct_plane(a, b, c, d, pta, ptb, &pt1);
   in2 = CNline_intsct_plane(a, b, c, d, ptc, ptb, &pt2);
   in3 = CNline_intsct_plane(a, b, c, d, ptc, pta, &pt3);
   if (in1) point[i++]=pt1;
   if (in2) point[i++]=pt2;
   if (in3) point[i++]=pt3;
   nint = in1 + in2 + in3;
   if (verbose) (void) fprintf(stdout,"%d intersections\n",nint);

   /* There can be 0 to 3 intersections */
   if (nint == 1) {
      /* 
       * One intersection - must be floating point error where
       * the plane is at the tip of the triangle
       */
      intsct = CN_FALSE;
   } else if (nint == 2) {
      /* 
       * Two intersections - just return 2 
       */
      *ptmin = point[0];   
      *ptmax = point[1];   
      intsct = CN_TRUE;
   } else if (nint == 3) {
      /* 
       * Three intersections - two of these must be pretty close
       */
      if (verbose) {
         for (i=0; i<nint; i++)
            (void) fprintf(stdout,"Intersection #%d : (%10.5f %10.5f %10.5f)\n",
                    i,point[i].x,point[i].y,point[i].z);
      }
      /* Get the line-segment */
      if ( (fabs(point[0].x - point[1].x) < CN_SMALLER) &&
           (fabs(point[0].y - point[1].y) < CN_SMALLER) &&
           (fabs(point[0].z - point[1].z) < CN_SMALLER) ) {
         *ptmin = point[0];
         *ptmax = point[2];
      } else {
         *ptmin = point[0];
         *ptmax = point[1];
      }
      intsct = CN_TRUE;
   } else {
      /*
       * Zero or non-valid no of intersections
       */
      intsct = CN_FALSE;
   } 

   /* Return status */
   return(intsct);
}
   

/*
 * find the intersection values between a line-segment and a plane
 */
int CNline_intsct_plane(a, b, c, d, pta, ptb, ptc)
double   a, b, c, d;       /* The equation of the plane          */
CNpoint  *pta, *ptb;       /* The two points on the line-segment */
CNpoint  *ptc;             /* The intersection                   */
{
   int    intsct = CN_FALSE;
   double d1, d2, t;
   
   /* Double-check plane equation */
   if ((fabs(a)<CN_SMALLER) && (fabs(b)<CN_SMALLER) && (fabs(c)<CN_SMALLER)) {
      (void) fprintf(stderr,"The plane is undefined! ");
      (void) fprintf(stderr,"Plane equation: %gx + %gy + %gz = %g\n",a,b,c,-d);
      return(intsct);
   }

   /* Get plane equations for 2 points */
   d1 = -1.0 * ( a * pta->x + b * pta->y + c * pta->z);
   d2 = -1.0 * ( a * ptb->x + b * ptb->y + c * ptb->z);

   /*
    * We need to avoid multiple points where a joint of 2 lines
    * falls exactly on a plane.  In such a case, screen the lines first
    * so that one line is "above" and one line intersects the plane.
    * But can't do this here because then the order of the points on the
    * line makes a difference.
    */

   if (fabs(d2-d1) < CN_SMALLER) {
      /* The line lies on or is parallel to the plane */
      intsct = CN_FALSE;
      return(intsct);
   } else if ( ((d1 > d) && (d2 > d)) || ((d1 < d) && (d2 < d)) ) {
      /* Line has points all on one side of the planes */
      intsct = CN_FALSE;
      return(intsct);
   }

   /*
    * Let the parameter t overlap a bit.
    * This means that if one point of the line is exactly on the plane, 
    * it will be counted as an intersection regardless of its position 
    * on the line.
    */

   /* Find the intersection */
   t  = (d - d1) / (d2 - d1);
   if ((t > -CN_SMALLER) && (t <= 1.0+CN_SMALLER)) {
      intsct = CN_TRUE;
      if (t < 0.5) {
         ptc->x = pta->x + t*(ptb->x - pta->x);
         ptc->y = pta->y + t*(ptb->y - pta->y);
         ptc->z = pta->z + t*(ptb->z - pta->z);
      } else {
         /*
          * This is to prevent problems when t is very small,
          * e.g. t=1e-20, so that 1-t=1.  In such cases, the order
          * of points makes a difference.  This if-else statement
          * circumvents the problem by switching the order of points.
          */
         t  = (d - d2) / (d1 - d2);
         ptc->x = ptb->x + t*(pta->x - ptb->x);
         ptc->y = ptb->y + t*(pta->y - ptb->y);
         ptc->z = ptb->z + t*(pta->z - ptb->z);
      }
   }

   /* Return status */
   return(intsct);
}

/*
 * find out if a line-segment is long or short
 *
 * This comparison needs to be done on a relative basis
 */
int CNlongline(pta,ptb,delta)
CNpoint *pta,*ptb;
double  delta;
{
   int    longln = CN_TRUE;
   double dx,dy,dz,dlsq;

   dx = pta->x - ptb->x;  
   dy = pta->y - ptb->y; 
   dz = pta->z - ptb->z;
   dlsq = dx*dx + dy*dy + dz*dz;

   /* 
    * Delta is the boundary which is larger than dx,dy,dz
    * but delta could be zero
    */
   delta = 1e-15*delta*delta;
   if (delta < CN_SMALLER) delta = CN_SMALLER;

   longln = (dlsq > delta) ? CN_TRUE : CN_FALSE;

   return(longln);
}

/*
 * find out if a line-segment is long or short
 *
 * This comparison needs to be done on a relative basis
 */
int CNlongline_old(pta,ptb)
CNpoint *pta,*ptb;
{
   int    longln = CN_TRUE;
   double dx,dy,dz;
   double xm,ym,zm;

   dx = fabs(pta->x - ptb->x);  xm = fabs(pta->x + ptb->x);
   dy = fabs(pta->y - ptb->y);  ym = fabs(pta->y + ptb->y);
   dz = fabs(pta->z - ptb->z);  zm = fabs(pta->z + ptb->z);

   if (xm < CN_SMALLER) 
      longln = (dx    > CN_SMALL) ? CN_TRUE : CN_FALSE;
   else 
      longln = (dx/xm > CN_SMALL) ? CN_TRUE : CN_FALSE;
   if (longln) return(longln);   

   if (ym < CN_SMALLER) 
      longln = (dy    > CN_SMALL) ? CN_TRUE : CN_FALSE;
   else 
      longln = (dy/ym > CN_SMALL) ? CN_TRUE : CN_FALSE;
   if (longln) return(longln);   

   if (zm < CN_SMALLER) 
      longln = (dz    > CN_SMALL) ? CN_TRUE : CN_FALSE;
   else 
      longln = (dz/zm > CN_SMALL) ? CN_TRUE : CN_FALSE;
   if (longln) return(longln);   

   return(longln);
}