1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
from __future__ import annotations
import copy
import sys
from typing import Callable
import matplotlib.colors as pltc
import matplotlib.pyplot as plt
import numpy as np
from plotpy.mathutils.colormap import (
DEFAULT_COLORMAPS,
DEFAULT_COLORMAPS_PATH,
CmapDictType,
EditableColormap,
save_colormaps,
)
PERCEPTUALLY_UNIFORM_CMAPS = ["viridis", "plasma", "inferno", "magma", "cividis"]
SEQUENTIAL_CMAPS = [
"Greys",
"Purples",
"Blues",
"Greens",
"Oranges",
"Reds",
"YlOrBr",
"YlOrRd",
"OrRd",
"PuRd",
"RdPu",
"BuPu",
"GnBu",
"PuBu",
"YlGnBu",
"PuBuGn",
"BuGn",
"YlGn",
]
SEQUENTIAL_CMAPS2 = [
"binary",
"gist_yarg",
"gist_gray",
"gray",
"bone",
"pink",
"spring",
"summer",
"autumn",
"winter",
"cool",
"Wistia",
"hot",
"afmhot",
"gist_heat",
"copper",
]
DIVERGING_CMAPS = [
"PiYG",
"PRGn",
"BrBG",
"PuOr",
"RdGy",
"RdBu",
"RdYlBu",
"RdYlGn",
"Spectral",
"coolwarm",
"bwr",
"seismic",
]
CYCLIC_CMAPS = ["twilight", "twilight_shifted", "hsv"]
QUALITATIVE_CMAPS = [
"Pastel1",
"Pastel2",
"Paired",
"Accent",
"Dark2",
"Set1",
"Set2",
"Set3",
"tab10",
"tab20",
"tab20b",
"tab20c",
]
MISCELLANEOUS_CMAPS = [
"flag",
"prism",
"ocean",
"gist_earth",
"terrain",
"gist_stern",
"gnuplot",
"gnuplot2",
"CMRmap",
"cubehelix",
"brg",
"gist_rainbow",
"rainbow",
"jet",
"turbo",
"nipy_spectral",
"gist_ncar",
]
SORTED_MATPLOTLIB_COLORMAPS: list[str] = [
*PERCEPTUALLY_UNIFORM_CMAPS,
*SEQUENTIAL_CMAPS,
*SEQUENTIAL_CMAPS2,
*DIVERGING_CMAPS,
*CYCLIC_CMAPS,
*QUALITATIVE_CMAPS,
*MISCELLANEOUS_CMAPS,
]
def rgb_colors_to_hex_list(
colors: list[tuple[int, int, int]],
) -> list[tuple[float, str]]:
"""Convert a list of RGB colors to a list of tuples with the position of the color
and the color in hex format. Positions evenly distributed between 0 and 1.
Args:
colors: list of RGB colors
Returns:
list of tuples with the position of the color and the color in hex format
"""
return [(i / len(colors), pltc.to_hex(color)) for i, color in enumerate(colors)]
def _interpolate(
val: float, vmin: tuple[float, float, float], vmax: tuple[float, float, float]
):
"""Interpolate between two level of a color.
Args:
val: value to interpolate
vmin: R, G or B tuple from a matplotlib segmented colormap
vmax: R, G or B tuple from matplotlib segmented colormap
Returns:
The interpolated R, G or B component
"""
interp = (val - vmin[0]) / (vmax[0] - vmin[0])
return (1 - interp) * vmin[1] + interp * vmax[2]
def std_segmented_cmap_to_hex_list(cmdata: dict[str, list[tuple[float, float, float]]]):
"""Convert a matplotlib segmented colormap to a list of tuples with the position of
the color and the color in hex format.
Args:
cmdata: segmented colormap data
Returns:
list of tuples with the position of the color and the color in hex format
"""
colors: list[tuple[float, str]] = []
red = np.array(cmdata["red"])
green = np.array(cmdata["green"])
blue = np.array(cmdata["blue"])
indices = sorted(set(red[:, 0]) | set(green[:, 0]) | set(blue[:, 0]))
for i in indices:
idxr = red[:, 0].searchsorted(i)
idxg = green[:, 0].searchsorted(i)
idxb = blue[:, 0].searchsorted(i)
compr = _interpolate(i, red[idxr - 1], red[idxr])
compg = _interpolate(i, green[idxg - 1], green[idxg])
compb = _interpolate(i, blue[idxb - 1], blue[idxb])
colors.append((i, pltc.to_hex((compr, compg, compb))))
return colors
InterpFuncT = Callable[[np.ndarray], np.ndarray]
def func_segmented_cmap_to_hex_list(
n: int,
cmap: pltc.LinearSegmentedColormap,
) -> list[tuple[float, str]]:
"""Convert a matplotlib segmented colormap to a list of tuples with the position of
the color and the color in hex format. The input colormap contains function for each
color RGB component instead of a list of colors.
Args:
n: number of colors to generate
cmap: segmented colormap
Returns:
list of tuples with the position of the color and the color in hex format
"""
colors = []
arr = np.linspace(0, 1, n, dtype=float)
colors = [(i, pltc.to_hex(rgba)) for i, rgba in zip(arr, cmap(arr))]
return colors
def continuous_to_descrete_cmap(cmap: EditableColormap) -> EditableColormap:
"""Convert a continuous colormap to a descrete one.
Args:
cmap: colormap to convert
Returns:
descrete colormap
"""
raw_cmap: tuple[tuple[float, str], ...] = cmap.to_tuples()
new_raw_cmap: list[tuple[float, str]] = [raw_cmap[0]]
n = len(raw_cmap)
coeff = (n - 1) / n
for i, (pos, color) in enumerate(raw_cmap[1:]):
prev_pos, prev_color = raw_cmap[i]
curr_pos, curr_color = pos, color
new_pos = curr_pos * coeff
new_raw_cmap.append((new_pos, prev_color))
new_raw_cmap.append((new_pos, curr_color))
new_raw_cmap.append(raw_cmap[-1])
return EditableColormap.from_iterable(new_raw_cmap, name=cmap.name)
def sort_mpl_colormaps(colormaps: CmapDictType) -> CmapDictType:
"""Filter and sort input colormaps to follow the same order (by category) as in the
matplotlib colormaps documentation. Colormaps not found in the matplotlib
are filtered out.
Args:
colormaps: Dictionnary of colormaps to extract and order
Returns:
Filtered and sorted colormaps dictionnary
"""
ordered_colormaps: CmapDictType = {}
lower_cmap_names = [cm.lower() for cm in SORTED_MATPLOTLIB_COLORMAPS]
for lower_name in lower_cmap_names:
cmap = colormaps.get(lower_name, None)
if lower_name.endswith("_r"):
continue
if cmap is None:
print(f"Colormap {lower_name} not found in input colormaps.")
continue
ordered_colormaps[lower_name] = cmap
return ordered_colormaps
def append_non_mpl_colormaps(mpl_colormaps: CmapDictType, colormaps: CmapDictType):
"""Append colormaps not found in the matplotlib colormaps to the input colormaps.
Mutate the input in place.
Args:
mpl_colormaps: dictionnary of matplotlib colormaps. Mutated in place.
colormaps: dictionnary of colormaps to append to the matplotlib colormaps
"""
colormap_names = set(SORTED_MATPLOTLIB_COLORMAPS)
for colormap in colormaps.values():
if colormap.name not in colormap_names:
print(f"{colormap} not in matplotlib colormaps.")
mpl_colormaps[colormap.name.lower()] = colormap
def main(cmaps: CmapDictType, out_json_path: str = DEFAULT_COLORMAPS_PATH):
new_cmaps: dict[str, list[tuple[float, str]]] = {}
# Uniform colormaps with a .colors attribute that return a list of RGB colors
cmaps_with_colors = [
"magma",
"viridis",
"inferno",
"plasma",
"cividis",
]
# Discrete colormaps, same as uniform colormaps but the colormap must be post
# processed to become descrete
descrete_cmaps = [
"Pastel1",
"Pastel2",
"Paired",
"Accent",
"Dark2",
"Set1",
"Set2",
"Set3",
]
cmaps_with_colors.extend(descrete_cmaps)
# Colormaps with a _segmented_data attribute that contains the R, G and B components
# as lists of tuples
segmented_cmaps = [
"coolwarm",
"bwr",
"seismic",
]
# Colormaps with a _segmentdata attribute that contains the R, G and B components as
# functions that return the color for a given position
interp_cmaps = ["gnuplot2", "CMRmap", "rainbow", "turbo", "afmhot"]
for cm_name in cmaps_with_colors:
cmap = plt.get_cmap(cm_name)
new_cmaps[cm_name] = rgb_colors_to_hex_list(cmap.colors)
for cm_name in descrete_cmaps:
cmap = EditableColormap.from_iterable(new_cmaps[cm_name], name=cm_name)
new_cmaps[cm_name] = list(continuous_to_descrete_cmap(cmap).to_tuples())
for cm_name in segmented_cmaps:
cmap = plt.get_cmap(cm_name)
new_cmaps[cm_name] = std_segmented_cmap_to_hex_list(cmap._segmentdata)
n = 128
for cm_name in interp_cmaps:
cmap = plt.get_cmap(cm_name)
new_cmaps[cm_name] = func_segmented_cmap_to_hex_list(n, cmap)
for name, raw_cm in new_cmaps.items():
cmaps[name.lower()] = EditableColormap.from_iterable(raw_cm, name=name)
ordered_cmaps = sort_mpl_colormaps(cmaps)
append_non_mpl_colormaps(ordered_cmaps, cmaps)
save_colormaps(out_json_path, ordered_cmaps)
if __name__ == "__main__":
cmaps = copy.deepcopy(DEFAULT_COLORMAPS)
out_json = sys.argv[1] if len(sys.argv) > 1 else DEFAULT_COLORMAPS_PATH
main(cmaps, out_json)
|