1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
/* This file contains the space method, which is a standard part of
libplot. It sets the mapping from user coordinates to display
coordinates. On the display device, the drawing region is a fixed
rectangle (usually a square). The arguments to the space method are the
lower left and upper right vertices of a `window' (a drawing rectangle),
in user coordinates. This window, whose axes are aligned with the
coordinate axes, will be mapped affinely onto the drawing region on the
display device.
Equivalently, the space method sets the transformation matrix attribute
that will be used for graphical objects that are subsequently drawn.
Any transformation matrix produced by invoking space() will necessarily
preserve coordinate axes.
This file also contains the space2 method, which is a GNU extension to
libplot. The arguments to the space2 method are the vertices of an
`affine window' (a drawing parallelogram), in user coordinates. (The
specified vertices are the lower left, the lower right, and the upper
left.) This window will be mapped affinely onto the drawing region on
the display device. Transformation matrices produced by invoking
space() do not necessarily preserve coordinate axes.
space and space2 are simply wrappers around the fsetmatrix() method. */
/* This file also contains the fsetmatrix method, which is a GNU extension
to libplot. Much as in Postscript, it sets the transformation matrix
from user coordinates to NDC (normalized device coordinates). This, in
turn, determines the map from user coordinates to device coordinates.
The resulting transformation matrix will be used as an attribute of
objects that are subsequently drawn on the graphics display. */
/* This file also contains the fconcat method, which is a GNU extension to
libplot. fconcat is simply a wrapper around fsetmatrix. As in
Postscript, it left-multiplies the transformation matrix from user
coordinates to NDC coordinates by a specified matrix. That is, it
modifies the affine transformation from user coordinates to NDC and
hence to device coordinates, by requiring that the transformation
currently in effect be be preceded by a specified affine
transformation. */
/* N.B. Invoking fsetmatrix causes the default line width and default font
size, which are expressed in user units, to be recomputed. That is
because those two quantities are specified as a fraction of the size of
the display: in device terms, rather than in terms of user units. The
idea is that no matter what the arguments of fsetmatrix are, switching
later to the default line width or default font size, by passing an
out-of-bounds argument to linewidth() or fontsize(), should yield a
reasonable result. */
#include "sys-defines.h"
#include "extern.h"
/* possible rotation angles for viewport on output device */
enum rotation_type { ROT_0, ROT_90, ROT_180, ROT_270 };
/* potential roundoff error (absolute, for defining boundary of display) */
#define ROUNDING_FUZZ 0.0000001
/* potential roundoff error (relative, used for checking isotropy etc.) */
#define OTHER_FUZZ 0.0000001
/* The vertices of the parallelogram in user space have coordinates (going
counterclockwise) (x0,y0), (x1,y1), (x1,y1)+(x2,y2)-(x0,y0), and
(x2,y2). */
int
#ifdef _HAVE_PROTOS
_API_fspace2 (R___(Plotter *_plotter) double x0, double y0, double x1, double y1, double x2, double y2)
#else
_API_fspace2 (R___(_plotter) x0, y0, x1, y1, x2, y2)
S___(Plotter *_plotter;)
double x0, y0, x1, y1, x2, y2;
#endif
{
double s[6];
double v0x, v0y, v1x, v1y, v2x, v2y;
double cross;
if (!_plotter->data->open)
{
_plotter->error (R___(_plotter)
"fspace2: invalid operation");
return -1;
}
/* Compute affine transformation from user frame to NDC [normalized
device coordinates] frame. The parallelogram in the user frame is
mapped to the square [0,1]x[0,1] in the NDC frame. */
v0x = x0;
v0y = y0;
v1x = x1 - x0;
v1y = y1 - y0;
v2x = x2 - x0;
v2y = y2 - y0;
cross = v1x * v2y - v1y * v2x;
if (cross == 0.0)
{
_plotter->error (R___(_plotter)
"cannot perform singular affine transformation");
return -1;
}
/* linear transformation */
s[0] = v2y / cross;
s[1] = -v1y / cross;
s[2] = -v2x / cross;
s[3] = v1x / cross;
/* translation */
s[4] = - (v0x * v2y - v0y * v2x) / cross;
s[5] = (v0x * v1y - v0y * v1x) / cross;
return _API_fsetmatrix (R___(_plotter)
s[0], s[1], s[2], s[3], s[4], s[5]);
}
int
#ifdef _HAVE_PROTOS
_API_fspace (R___(Plotter *_plotter) double x0, double y0, double x1, double y1)
#else
_API_fspace (R___(_plotter) x0, y0, x1, y1)
S___(Plotter *_plotter;)
double x0, y0, x1, y1;
#endif
{
return _API_fspace2 (R___(_plotter) x0, y0, x1, y0, x0, y1);
}
int
#ifdef _HAVE_PROTOS
_API_fsetmatrix (R___(Plotter *_plotter) double m0, double m1, double m2, double m3, double m4, double m5)
#else
_API_fsetmatrix (R___(_plotter) m0, m1, m2, m3, m4, m5)
S___(Plotter *_plotter;)
double m0, m1, m2, m3, m4, m5;
#endif
{
int i;
double s[6], t[6];
double norm, min_sing_val, max_sing_val;
if (!_plotter->data->open)
{
_plotter->error (R___(_plotter)
"fsetmatrix: invalid operation");
return -1;
}
/* linear transformation */
s[0] = m0;
s[1] = m1;
s[2] = m2;
s[3] = m3;
/* translation */
s[4] = m4;
s[5] = m5;
/* store new user_frame->NDC_frame map in drawing state */
for (i = 0; i < 6; i++)
_plotter->drawstate->transform.m_user_to_ndc[i] = s[i];
/* compute the user_frame -> device_frame map, as product of this map
with the following NDC_frame->device_frame map: store in drawing state */
_matrix_product (s, _plotter->data->m_ndc_to_device, t);
for (i = 0; i < 6; i++)
_plotter->drawstate->transform.m[i] = t[i];
/* for convenience, precompute boolean properties of the
user_frame->device_frame map: store in drawing state */
/* Does the user_frame->device_frame map preserve axis directions?
(Since our NDC_frame->device frame map always does, this is the same
as, does the user_frame->NDC_frame map preserve axis directions?) */
_plotter->drawstate->transform.axes_preserved =
(t[1] == 0.0 && t[2] == 0.0) ? true : false;
/* Is the user_frame->device_frame map a uniform scaling (possibly
involving a rotation or reflection)? We need to know this because
it's only uniform maps that map circles to circles, and circular arcs
to circular arcs. Also some Plotters, e.g. Fig Plotters, don't
support non-uniformly transformed fonts. */
#define IS_ZERO(arg) (IS_ZERO1(arg) && IS_ZERO2(arg))
#define IS_ZERO1(arg) (FABS(arg) < OTHER_FUZZ * DMAX(t[0] * t[0], t[1] * t[1]))
#define IS_ZERO2(arg) (FABS(arg) < OTHER_FUZZ * DMAX(t[2] * t[2], t[3] * t[3]))
/* if row vectors are of equal length and orthogonal... */
if (IS_ZERO(t[0] * t[0] + t[1] * t[1] - t[2] * t[2] - t[3] * t[3])
&&
IS_ZERO(t[0] * t[2] + t[1] * t[3]))
/* map's scaling is uniform */
_plotter->drawstate->transform.uniform = true;
else
/* map's scaling not uniform */
_plotter->drawstate->transform.uniform = false;
/* Does the user_frame->physical_frame map involve a reflection? This is
useful to know because some Plotters, e.g. Fig Plotters, don't support
reflected fonts, even if they're uniformly transformed.
This is a tricky question, because it isn't a question about the
user_frame->device_frame map alone. There's a sequence of maps:
user_frame -> NDC_frame -> device_frame -> physical_frame
If the device_frame uses `flipped y' coordinates, then by definition,
the default NDC_frame->device_frame map and the
device_frame->physical_frame map both include a reflection, so they
cancel each other out.
(Though depending on the Plotter, non-default behavior could obtain.
For example, the PAGESIZE parameter allows the specification of xsize
and ysize, and if exactly one of these two is negative, the
NDC_frame->device_frame map will include an extra reflection.)
What we do is look at the `sign' or orientation-preservingness of the
user_frame->device_frame map, and flip it if the
device_frame->physical_frame map is flagged as `flipped y'. */
{
double det;
det = t[0] * t[3] - t[1] * t[2];
_plotter->drawstate->transform.nonreflection
= ((_plotter->data->flipped_y ? -1 : 1) * det >= 0) ? true : false;
}
/* DO SOME OTHER STUFF, ALL RELATED TO LINE WIDTHS AND FONT SIZES */
/* For scaling purposes, compute matrix norm of linear transformation
appearing in the affine map from the user frame to the NDC frame. */
/* This minimum singular value isn't really the norm. But it's close
enough. */
_matrix_sing_vals (s, &min_sing_val, &max_sing_val);
norm = min_sing_val;
/* Set new default line width in user frame. This default value will be
switched to, later, if the user calls linewidth() with a negative
(i.e. out-of-bound) argument. */
if (_plotter->data->display_coors_type
== (int)DISP_DEVICE_COORS_INTEGER_LIBXMI)
/* using libxmi or a compatible rendering algorithm; so set default
line width to zero (interpreted as specifying a Bresenham line) */
_plotter->drawstate->default_line_width = 0.0;
else
/* not using libxmi or a compatible rendering algorithm; so set default
line width to a nonzero fraction of the display size */
{
if (norm == 0.0) /* avoid division by 0 */
_plotter->drawstate->default_line_width = 0.0;
else
_plotter->drawstate->default_line_width
= DEFAULT_LINE_WIDTH_AS_FRACTION_OF_DISPLAY_SIZE / norm;
}
if (_plotter->data->linewidth_invoked == false)
/* help out lusers who rely on us to initialize the linewidth to a
reasonable value, as if this were plot(3) rather than GNU libplot */
{
/* invoke API function flinewidth(), which computes a nominal
device-frame line width, using the transformation matrix;
specifying a negative linewidth switches to the default */
_API_flinewidth (R___(_plotter) -1.0);
/* pretend we haven't invoked flinewidth() yet, so that the luser can
invoke space() and/or fsetmatrix() additional times, each time
automatically resetting the linewidth */
_plotter->data->linewidth_invoked = false;
}
else
/* invoke API function merely to compute a new nominal device-frame
line width, from the current user-frame line width */
_API_flinewidth (R___(_plotter) _plotter->drawstate->line_width);
/* Similarly, set new default font size in user frame. This default
value will be switched to, later, if the user calls fontsize() with
out-of-bound arguments. */
if (norm == 0.0) /* avoid division by 0 */
_plotter->drawstate->default_font_size = 0.0;
else
_plotter->drawstate->default_font_size
= DEFAULT_FONT_SIZE_AS_FRACTION_OF_DISPLAY_SIZE / norm;
/* Help out users who rely on us to choose a reasonable font size, as if
this were Unix plot(3) rather than GNU libplot. We don't wish to
retrieve an actual font here, so we don't invoke _API_fontsize().
However, this size will be used by the Plotter-specific method
_paint_text(), which will first do the retrieval. */
if (_plotter->data->fontsize_invoked == false)
_plotter->drawstate->font_size = _plotter->drawstate->default_font_size;
return 0;
}
int
#ifdef _HAVE_PROTOS
_API_fconcat (R___(Plotter *_plotter) double m0, double m1, double m2, double m3, double m4, double m5)
#else
_API_fconcat (R___(_plotter) m0, m1, m2, m3, m4, m5)
S___(Plotter *_plotter;)
double m0, m1, m2, m3, m4, m5;
#endif
{
double m[6], s[6];
if (!_plotter->data->open)
{
_plotter->error (R___(_plotter)
"fconcat: invalid operation");
return -1;
}
m[0] = m0;
m[1] = m1;
m[2] = m2;
m[3] = m3;
m[4] = m4;
m[5] = m5;
/* compute new user->NDC affine map */
_matrix_product (m, _plotter->drawstate->transform.m_user_to_ndc, s);
/* set it in drawing state */
return _API_fsetmatrix (R___(_plotter)
s[0], s[1], s[2], s[3], s[4], s[5]);
}
/* Compute the affine transformation from the NDC frame to the device
frame. This is an internal method, called by any Plotter at
initialization time, or at latest during the first invocation of
openpl().
The square [0,1]x[0,1] in the NDC frame is mapped to the viewport in the
device frame (a square or rectangular region). So, the
NDC_frame->device_frame map preserves coordinate axes. (Though either
the x or y axis may be flipped, the latter being more common, because
some devices' native coordinate system has a flipped-y convention, which
means that the final device_frame->physical_frame map flips in the y
direction.)
There is support for the ROTATION Plotter parameter, which allows the
NDC frame to be rotated by 90, 180, or 270 degrees, before it is mapped
to the device frame. */
bool
#ifdef _HAVE_PROTOS
_compute_ndc_to_device_map (plPlotterData *data)
#else
_compute_ndc_to_device_map (data)
plPlotterData *data;
#endif
{
double t[6];
double device_x_left, device_x_right, device_y_bottom, device_y_top;
const char *rotation_s;
int i, rotation_angle;
/* begin by computing device coordinate ranges */
switch (data->display_model_type)
{
case (int)DISP_MODEL_PHYSICAL:
/* Plotter has a physical display, ranges in device coordinates of
the viewport are known (they're expressed in inches, and are
computed from the PAGESIZE parameter when the Plotter is created,
see ?_defplot.c). E.g., AI, Fig, HPGL, PCL, and PS Plotters. */
{
device_x_left = data->xmin;
device_x_right = data->xmax;
device_y_bottom = data->ymin;
device_y_top = data->ymax;
}
break;
case (int)DISP_MODEL_VIRTUAL:
default:
/* Plotter has a display, but its size isn't specified in physical
units such as inches. E.g., CGM, SVG, GIF, PNM, Tektronix, X, and
X Drawable Plotters. CGM and SVG Plotters are hybrids of a sort:
the PAGESIZE parameter is meaningful for them, as far as nominal
viewport size goes, but we treat a CGM or SVG display as `virtual'
because a CGM or SVG viewer or interpreter is free to ignore the
requested viewport size. */
{
switch ((int)data->display_coors_type)
{
case (int)DISP_DEVICE_COORS_REAL:
default:
/* Real-coordinate virtual display device. E.g., generic and
Metafile Plotters; also SVG Plotters. */
device_x_left = data->xmin;
device_x_right = data->xmax;
device_y_bottom = data->ymin;
device_y_top = data->ymax;
break;
case (int)DISP_DEVICE_COORS_INTEGER_LIBXMI:
case (int)DISP_DEVICE_COORS_INTEGER_NON_LIBXMI:
/* Integer-coordinate virtual display device, in the sense that
we emit integer coordinates only (sometimes by choice).
Of the Plotters that have virtual displays (see above), GIF,
PNM, X, and X Drawable Plotters use libxmi-compatible scan
conversion; Tektronix Plotters and CGM Plotters do not.
In both cases, compute device coordinate ranges from imin,
imax, jmin, jmax, which are already available (see
?_defplot.c; e.g., for Plotters with adjustable-size
displays, they are taken from the BITMAPSIZE parameter).
The subtraction/addition of 0.5-ROUNDING_FUZZ, which widens
the rectangle by nearly 0.5 pixel on each side, is magic. */
{
/* test whether NCD_frame->device_frame map reflects in the x
and/or y direction */
double x_sign = (data->imin < data->imax ? 1.0 : -1.0);
double y_sign = (data->jmin < data->jmax ? 1.0 : -1.0);
device_x_left = ((double)(data->imin)
+ x_sign * (- 0.5 + ROUNDING_FUZZ));
device_x_right = ((double)(data->imax)
+ x_sign * (0.5 - ROUNDING_FUZZ));
device_y_bottom = ((double)(data->jmin)
+ y_sign * (- 0.5 + ROUNDING_FUZZ));
device_y_top = ((double)(data->jmax)
+ y_sign * (0.5 - ROUNDING_FUZZ));
}
break;
}
}
break;
}
/* device coordinate ranges now known, so work out transformation from
NDC frame to device frame; take ROTATION parameter into account */
rotation_s = (const char *)_get_plot_param (data, "ROTATION");
if (rotation_s == NULL)
rotation_s = (const char *)_get_default_plot_param ("ROTATION");
if (strcmp (rotation_s, "90") == 0
|| strcmp (rotation_s, "yes") == 0) /* "yes" means "90" */
rotation_angle = (int)ROT_90;
else if (strcmp (rotation_s, "180") == 0)
rotation_angle = (int)ROT_180;
else if (strcmp (rotation_s, "270") == 0)
rotation_angle = (int)ROT_270;
else rotation_angle = (int)ROT_0; /* default, includes "no" */
switch (rotation_angle)
{
case (int)ROT_0:
default:
/* NDC point (0,0) [lower left corner] gets mapped into this */
t[4] = device_x_left;
t[5] = device_y_bottom;
/* NDC vector (1,0) gets mapped into this */
t[0] = device_x_right - device_x_left;
t[1] = 0.0;
/* NDC vector (0,1) gets mapped into this */
t[2] = 0.0;
t[3] = device_y_top - device_y_bottom;
break;
case (int)ROT_90:
/* NDC point (0,0) [lower left corner] gets mapped into this */
t[4] = device_x_right;
t[5] = device_y_bottom;
/* NDC vector (1,0) gets mapped into this */
t[0] = 0.0;
t[1] = device_y_top - device_y_bottom;
/* NDC vector (0,1) gets mapped into this */
t[2] = device_x_left - device_x_right;
t[3] = 0.0;
break;
case (int)ROT_180:
/* NDC point (0,0) [lower left corner] gets mapped into this */
t[4] = device_x_right;
t[5] = device_y_top;
/* NDC vector (1,0) gets mapped into this */
t[0] = device_x_left - device_x_right;
t[1] = 0.0;
/* NDC vector (0,1) gets mapped into this */
t[2] = 0.0;
t[3] = device_y_bottom - device_y_top;
break;
case (int)ROT_270:
/* NDC point (0,0) [lower left corner] gets mapped into this */
t[4] = device_x_left;
t[5] = device_y_top;
/* NDC vector (1,0) gets mapped into this */
t[0] = 0.0;
t[1] = device_y_bottom - device_y_top;
/* NDC vector (0,1) gets mapped into this */
t[2] = device_x_right - device_x_left;
t[3] = 0.0;
break;
}
/* set affine transformation in Plotter */
for (i = 0; i < 6; i++)
data->m_ndc_to_device[i] = t[i];
return true;
}
|