1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
/* Bessel function approximations, as given in the book "Computer
* Approximations" by Hart, Cheney et al., Wiley, 1968. Taken in part from
* the file standard.c in the gnuplot 3.5 distribution. */
#include "sys-defines.h"
#include "ode.h"
#include "extern.h"
/*
* Copyright (C) 1986 - 1993 Thomas Williams, Colin Kelley
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*/
/*
* AUTHORS
*
* Original Software:
* Thomas Williams, Colin Kelley.
*
* Gnuplot 2.0 additions:
* Russell Lang, Dave Kotz, John Campbell.
*
* Gnuplot 3.0 additions:
* Gershon Elber and many others.
*
*/
/*
* There appears to be a mistake in Hart, Cheney et al. on page 149.
* Where it lists Qn(x)/x ~ P(z*z)/Q(z*z), z = 8/x, it should read
* Qn(x)/z ~ P(z*z)/Q(z*z), z = 8/x
* In the functions below, Qn(x) is implemented using the later
* equation.
* These Bessel functions are accurate to about 1e-13.
*/
#ifndef HAVE_J0
#define PI_ON_FOUR 0.78539816339744830961566084581987572
#define PI_ON_TWO 1.57079632679489661923131269163975144
#define THREE_PI_ON_FOUR 2.35619449019234492884698253745962716
#define TWO_ON_PI 0.63661977236758134307553505349005744
static const double dzero = 0.0;
/* jzero for x in [0,8]
* Index 5849, 19.22 digits precision
*/
static const double pjzero[9] =
{
0.4933787251794133561816813446e+21,
-0.11791576291076105360384408e+21,
0.6382059341072356562289432465e+19,
-0.1367620353088171386865416609e+18,
0.1434354939140346111664316553e+16,
-0.8085222034853793871199468171e+13,
0.2507158285536881945555156435e+11,
-0.4050412371833132706360663322e+8,
0.2685786856980014981415848441e+5
};
static const double qjzero[9] =
{
0.4933787251794133562113278438e+21,
0.5428918384092285160200195092e+19,
0.3024635616709462698627330784e+17,
0.1127756739679798507056031594e+15,
0.3123043114941213172572469442e+12,
0.669998767298223967181402866e+9,
0.1114636098462985378182402543e+7,
0.1363063652328970604442810507e+4,
0.1e+1
};
/* pzero for x in [8,inf]
* Index 6548, 18.16 digits precision
*/
static const double ppzero[6] =
{
0.2277909019730468430227002627e+5,
0.4134538663958076579678016384e+5,
0.2117052338086494432193395727e+5,
0.348064864432492703474453111e+4,
0.15376201909008354295771715e+3,
0.889615484242104552360748e+0
};
static const double qpzero[6] =
{
0.2277909019730468431768423768e+5,
0.4137041249551041663989198384e+5,
0.2121535056188011573042256764e+5,
0.350287351382356082073561423e+4,
0.15711159858080893649068482e+3,
0.1e+1
};
/* qzero for x in [8,inf]
* Index 6948, 18.33 digits precision
*/
static const double pqzero[6] =
{
-0.8922660020080009409846916e+2,
-0.18591953644342993800252169e+3,
-0.11183429920482737611262123e+3,
-0.2230026166621419847169915e+2,
-0.124410267458356384591379e+1,
-0.8803330304868075181663e-2,
};
static const double qqzero[6] =
{
0.571050241285120619052476459e+4,
0.1195113154343461364695265329e+5,
0.726427801692110188369134506e+4,
0.148872312322837565816134698e+4,
0.9059376959499312585881878e+2,
0.1e+1
};
/* yzero for x in [0,8]
* Index 6245, 18.78 digits precision
*/
static const double pyzero[9] =
{
-0.2750286678629109583701933175e+20,
0.6587473275719554925999402049e+20,
-0.5247065581112764941297350814e+19,
0.1375624316399344078571335453e+18,
-0.1648605817185729473122082537e+16,
0.1025520859686394284509167421e+14,
-0.3436371222979040378171030138e+11,
0.5915213465686889654273830069e+8,
-0.4137035497933148554125235152e+5
};
static const double qyzero[9] =
{
0.3726458838986165881989980739e+21,
0.4192417043410839973904769661e+19,
0.2392883043499781857439356652e+17,
0.9162038034075185262489147968e+14,
0.2613065755041081249568482092e+12,
0.5795122640700729537380087915e+9,
0.1001702641288906265666651753e+7,
0.1282452772478993804176329391e+4,
0.1e+1
};
/* jone for x in [0,8]
* Index 6050, 20.98 digits precision
*/
static const double pjone[9] =
{
0.581199354001606143928050809e+21,
-0.6672106568924916298020941484e+20,
0.2316433580634002297931815435e+19,
-0.3588817569910106050743641413e+17,
0.2908795263834775409737601689e+15,
-0.1322983480332126453125473247e+13,
0.3413234182301700539091292655e+10,
-0.4695753530642995859767162166e+7,
0.270112271089232341485679099e+4
};
static const double qjone[9] =
{
0.11623987080032122878585294e+22,
0.1185770712190320999837113348e+20,
0.6092061398917521746105196863e+17,
0.2081661221307607351240184229e+15,
0.5243710262167649715406728642e+12,
0.1013863514358673989967045588e+10,
0.1501793594998585505921097578e+7,
0.1606931573481487801970916749e+4,
0.1e+1
};
/* pone for x in [8,inf]
* Index 6749, 18.11 digits precision
*/
static const double ppone[6] =
{
0.352246649133679798341724373e+5,
0.62758845247161281269005675e+5,
0.313539631109159574238669888e+5,
0.49854832060594338434500455e+4,
0.2111529182853962382105718e+3,
0.12571716929145341558495e+1
};
static const double qpone[6] =
{
0.352246649133679798068390431e+5,
0.626943469593560511888833731e+5,
0.312404063819041039923015703e+5,
0.4930396490181088979386097e+4,
0.2030775189134759322293574e+3,
0.1e+1
};
/* qone for x in [8,inf]
* Index 7149, 18.28 digits precision
*/
static const double pqone[6] =
{
0.3511751914303552822533318e+3,
0.7210391804904475039280863e+3,
0.4259873011654442389886993e+3,
0.831898957673850827325226e+2,
0.45681716295512267064405e+1,
0.3532840052740123642735e-1
};
static const double qqone[6] =
{
0.74917374171809127714519505e+4,
0.154141773392650970499848051e+5,
0.91522317015169922705904727e+4,
0.18111867005523513506724158e+4,
0.1038187585462133728776636e+3,
0.1e+1
};
/* yone for x in [0,8]
* Index 6444, 18.24 digits precision
*/
static const double pyone[8] =
{
-0.2923821961532962543101048748e+20,
0.7748520682186839645088094202e+19,
-0.3441048063084114446185461344e+18,
0.5915160760490070618496315281e+16,
-0.4863316942567175074828129117e+14,
0.2049696673745662182619800495e+12,
-0.4289471968855248801821819588e+9,
0.3556924009830526056691325215e+6
};
static const double qyone[9] =
{
0.1491311511302920350174081355e+21,
0.1818662841706134986885065935e+19,
0.113163938269888452690508283e+17,
0.4755173588888137713092774006e+14,
0.1500221699156708987166369115e+12,
0.3716660798621930285596927703e+9,
0.726914730719888456980191315e+6,
0.10726961437789255233221267e+4,
0.1e+1
};
/* Bessel function approximations */
double
#ifdef _HAVE_PROTOS
jzero (double x)
#else
jzero (x)
double x;
#endif
{
double p, q, x2;
int n;
x2 = x * x;
p = pjzero[8];
q = qjzero[8];
for (n=7; n>=0; n--)
{
p = p*x2 + pjzero[n];
q = q*x2 + qjzero[n];
}
return (p/q);
}
static double
#ifdef _HAVE_PROTOS
pzero (double x)
#else
pzero (x)
double x;
#endif
{
double p, q, z, z2;
int n;
z = 8.0 / x;
z2 = z * z;
p = ppzero[5];
q = qpzero[5];
for (n=4; n>=0; n--)
{
p = p*z2 + ppzero[n];
q = q*z2 + qpzero[n];
}
return (p/q);
}
static double
#ifdef _HAVE_PROTOS
qzero (double x)
#else
qzero (x)
double x;
#endif
{
double p, q, z, z2;
int n;
z = 8.0 / x;
z2 = z * z;
p = pqzero[5];
q = qqzero[5];
for (n=4; n>=0; n--)
{
p = p*z2 + pqzero[n];
q = q*z2 + qqzero[n];
}
return (p/q);
}
static double
#ifdef _HAVE_PROTOS
yzero (double x)
#else
yzero (x)
double x;
#endif
{
double p, q, x2;
int n;
x2 = x * x;
p = pyzero[8];
q = qyzero[8];
for (n=7; n>=0; n--)
{
p = p*x2 + pyzero[n];
q = q*x2 + qyzero[n];
}
return p/q;
}
double
#ifdef _HAVE_PROTOS
j0 (double x)
#else
j0 (x)
double x;
#endif
{
if (x <= 0.0)
x = -x;
if (x < 8.0)
return jzero(x);
else
return (sqrt(TWO_ON_PI/x)
* (pzero(x) * cos (x - PI_ON_FOUR)
- 8.0/x * qzero(x) * sin (x - PI_ON_FOUR)));
}
double
#ifdef _HAVE_PROTOS
y0 (double x)
#else
y0 (x)
double x;
#endif
{
if (x < 0.0)
return (dzero/dzero); /* IEEE machines: invalid operation */
if (x < 8.0)
return yzero(x) + TWO_ON_PI * j0(x) * log(x);
else
return (sqrt (TWO_ON_PI/x)
* (pzero(x) * sin (x - PI_ON_FOUR)
+ (8.0/x) * qzero(x) * cos(x - PI_ON_FOUR)));
}
static double
#ifdef _HAVE_PROTOS
jone (double x)
#else
jone (x)
double x;
#endif
{
double p, q, x2;
int n;
x2 = x * x;
p = pjone[8];
q = qjone[8];
for (n=7; n>=0; n--)
{
p = p*x2 + pjone[n];
q = q*x2 + qjone[n];
}
return (p/q);
}
static double
#ifdef _HAVE_PROTOS
pone (double x)
#else
pone (x)
double x;
#endif
{
double p, q, z, z2;
int n;
z = 8.0 / x;
z2 = z * z;
p = ppone[5];
q = qpone[5];
for (n=4; n>=0; n--)
{
p = p*z2 + ppone[n];
q = q*z2 + qpone[n];
}
return (p/q);
}
static double
#ifdef _HAVE_PROTOS
qone (double x)
#else
qone (x)
double x;
#endif
{
double p, q, z, z2;
int n;
z = 8.0 / x;
z2 = z * z;
p = pqone[5];
q = qqone[5];
for (n=4; n>=0; n--)
{
p = p*z2 + pqone[n];
q = q*z2 + qqone[n];
}
return p/q;
}
static double
#ifdef _HAVE_PROTOS
yone (double x)
#else
yone (x)
double x;
#endif
{
double p, q, x2;
int n;
x2 = x * x;
p = 0.0;
q = qyone[8];
for (n=7; n>=0; n--)
{
p = p*x2 + pyone[n];
q = q*x2 + qyone[n];
}
return p/q;
}
double
#ifdef _HAVE_PROTOS
j1 (double x)
#else
j1 (x)
double x;
#endif
{
double v,w;
v = x;
if (x < 0.0)
x = -x;
if (x < 8.0)
return v * jone(x);
else
{
w = (sqrt(TWO_ON_PI/x)
* (pone(x) * cos(x - THREE_PI_ON_FOUR)
- 8.0 / x * qone(x) * sin (x - THREE_PI_ON_FOUR)));
if (v < 0.0)
w = -w;
return w;
}
}
double
#ifdef _HAVE_PROTOS
y1 (double x)
#else
y1 (x)
double x;
#endif
{
if (x <= 0.0)
return (dzero/dzero); /* IEEE machines: invalid operation */
if (x < 8.0)
return x * yone(x) + TWO_ON_PI * (j1(x) * log(x) - 1.0/x);
else
return (sqrt(TWO_ON_PI/x)
* (pone(x) * sin (x - THREE_PI_ON_FOUR)
+ (8.0/x) * qone(x) * cos(x - THREE_PI_ON_FOUR)));
}
/* Computation of jn(n,x), i.e., a Bessel function of arbitrary
non-negative index, is as follows.
For n=0, j0() is called.
For n=1, j1() is called.
For n<x, forward recursion is used, starting from values of j0(x)
and j1(x).
For n>x, a continued fraction approximation to jn(n,x)/jn(n-1,x) is
evaluated, and then backward recursion is used starting from a
supposed value for jn(n,x). The resulting value of jn(0,x) is
compared with the actual value, to correct the supposed value of
jn(n,x).
Computation of yn(n,x) is similar in all respects, except that forward
recursion is used for all positive values of n.
*/
double
#ifdef _HAVE_PROTOS
jn (int n, double x)
#else
jn (n, x)
int n;
double x;
#endif
{
int i;
if (n < 0)
{
n = -n;
x = -x;
}
if (n == 0)
return j0(x);
if (n == 1)
return j1(x);
if (x == 0.0)
return 0.0;
if (n <= x)
{
double a = j0(x), b = j1(x), tmp;
for (i = 1; i < n; i++)
{
tmp = b;
b = (2.0*i / x) * b - a;
a = tmp;
}
return b;
}
else /* n > x */
{
double a, b, xsq, t, tmp;
xsq = x*x;
for (t=0, i=n+16; i > n; i--)
t = xsq / (2.0*i - t);
t = x / (2.0*n - t);
a = t;
b = 1.0;
for (i = n - 1; i > 0; i--)
{
tmp = b;
b = (2.0*i / x ) * b - a;
a = tmp;
}
return t*j0(x)/b;
}
}
double
#ifdef _HAVE_PROTOS
yn (int n, double x)
#else
yn (n, x)
int n;
double x;
#endif
{
int i, sign;
double a, b, tmp;
if (x <= 0)
return (dzero/dzero); /* IEEE machines: invalid operation */
sign = 1;
if (n < 0)
{
n = -n;
if (n%2 == 1)
sign = -1;
}
if (n == 0)
return y0(x);
if (n == 1)
return sign*y1(x);
a = y0(x);
b = y1(x);
for (i = 1; i<n; i++)
{
tmp = b;
b = (2.0*i / x) * b - a;
a = tmp;
}
return sign*b;
}
#endif /* HAVE_J0 */
|