File: spline.c

package info (click to toggle)
plotutils 2.4.1-11
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 11,676 kB
  • ctags: 6,967
  • sloc: ansic: 76,305; sh: 15,172; cpp: 12,403; yacc: 2,604; makefile: 888; lex: 144
file content (2037 lines) | stat: -rw-r--r-- 62,169 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
/* This program, spline, interpolates scalar or vector-valued input data
   using splines with tension, including piecewise cubic (zero-tension)
   splines.  When acting as a real-time filter, it uses cubic Bessel
   interpolation instead.  Written by Robert S. Maier
   <rsm@math.arizona.edu>, based on earlier work by Rich Murphey.
   Copyright (C) 1989-1999 Free Software Foundation, Inc.

   References:

   D. Kincaid and [E.] W. Cheney, Numerical Analysis, Brooks/Cole,
   2nd. ed., 1996, Section 6.4.

   C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978, 
   Chapter 4.

   A. K. Cline, "Scalar and Planar-Valued Curve Fitting Using Splines under
   Tension", Communications of the ACM 17 (1974), 218-223.

   The tension in a spline is set with the -T (i.e., --tension) option.  By
   definition, a one-dimensional spline with tension satisfies the
   differential equation y''''=sgn(tension)*(tension**2)y''.  The default
   value for the tension is zero.  If tension=0 then a spline with tension
   reduces to a conventional piecewise cubic spline.  In the limits
   tension->+infinity and tension->-infinity, a spline with tension reduces
   to a piecewise linear (`broken line') interpolation.

   To oversimplify a bit, 1.0/tension is the maximum abscissa range over
   which the spline likes to curve, at least when tension>0.  So increasing
   the tension far above zero tends to make the spline contain short curved
   sections, separated by sections that are almost straight.  The curved
   sections will be centered on the user-specified data points.  The
   behavior of the spline when tension<0 is altogether different: it will
   tend to oscillate, though as tension->-infinity the oscillations are
   damped out.

   Tension is a `dimensionful' quantity.  If tension=0 (the cubic spline
   case), then the computation of the spline is scale-invariant.  But if
   the tension is nonzero, then when the abscissa values are multiplied by
   some common positive factor, the tension should be divided by the same
   factor to obtain a scaled version of the original spline.

   The algorithms of Kincaid and Cheney have been extended to include
   support for periodicity.  To obtain a periodic spline, with or without
   tension, the user uses the -p (i.e., --periodic) option and supplies
   input data satisfying y[n]=y[0].  Also, in the non-periodic case the
   algorithms have been extended to include support for a parameter k,
   which appears in the two boundary conditions y''[0]=ky''[1] and
   y''[n]=ky''[n-1].  The default value of k is 1.0.  The parameter k,
   which is specified with the -k (i.e. --boundary-condition) option, is
   ignored for periodic splines (using the -k option with the -p option
   will elicit a warning).

   If the -f option is specified, then an altogether different (real-time)
   algorithm for generating interpolating points will be used, so that this
   program can be used as a real-time filter.  If -f is specified then the
   -t option, otherwise optional, must also be used.  (I.e., the minimum
   and maximum abscissa values for the interpolating points must be
   specified, and optionally the spacing between them as well.  If the
   spacing is not specified on the command line, then the interval
   [tmin,tmax] will be subdivided into a default number of intervals [100],
   unless the default number of intervals is overridden with the -n option.

   The real-time algorithm that is used when the -f option is specified is
   cubic Bessel interpolation.  (The -T, -p, and -k options are ignored
   when -f is specified; using them will elicit a warning.)  Interpolation
   in this case is piecewise cubic, and the slopes at either end of each
   sub-interval are found by fitting a parabola through each successive
   triple of points.  That is, the slope at t=t_n is found by fitting a
   parabola through the points at t_(n-1), t_n, and t_(n+1).  This
   interpolation scheme yields a spline that is only once, rather than
   twice, continuously differentiable.  However, it has the feature that
   all computations are local rather than global, so it is suitable for
   real-time work.

   Since the above was written, the -d option has been added, to permit the
   splining of multidimensional data.  All components of a d-dimensional
   data set (a d-dimensional vector y is specified at each t) are splined
   in the same way, as if they were one-dimensional functions of t.  All
   options that apply to 1-dimensional datasets, such as -T, -p, -k, -f,
   etc., apply to d-dimensional ones also. */

#include "sys-defines.h"
#include "getopt.h"

#define	ARG_NONE	0
#define	ARG_REQUIRED	1
#define	ARG_OPTIONAL	2

/* states for cubic Bessel DFA; occupancy of data point queue */
enum { STATE_ZERO, STATE_ONE, STATE_TWO, STATE_THREE };

/* types of auto-abscissa */
enum { AUTO_NONE, AUTO_INCREMENT, AUTO_BY_DISTANCE };

#define FUZZ 0.0000001		/* potential roundoff error */

/* Minimum value for magnitude of x, for such functions as x-sinh(x),
   x-tanh(x), x-sin(x), and x-tan(x) to have acceptable accuracy.  If the
   magnitude of x is smaller than this value, these functions of x will be
   computed via power series to accuracy O(x**6). */
#define TRIG_ARG_MIN 0.001

/* Maximum value for magnitude of x, beyond which we approximate
   x/sinh(x) and x/tanh(x) by |x|exp(-|x|). */
#define TRIG_ARG_MAX 50.0

struct option long_options[] =
{
  {"no-of-intervals",	ARG_REQUIRED,	NULL, 'n'},
  {"periodic",		ARG_NONE,	NULL, 'p'},
  {"y-dimension",	ARG_REQUIRED,	NULL, 'd'},
  {"t-limits",		ARG_REQUIRED,	NULL, 't'}, /* 1 or 2 or 3 */
  {"t-limits",		ARG_REQUIRED,	NULL, 'x'}, /* obsolescent; hidden */
  {"tension",		ARG_REQUIRED, 	NULL, 'T'},
  {"boundary-condition",ARG_REQUIRED,	NULL, 'k'},
  {"auto-abscissa",	ARG_OPTIONAL,	NULL, 'a'}, /* 0 or 1 or 2 */
  {"auto-dist-abscissa",ARG_NONE,	NULL, 'A'},
  {"filter",		ARG_NONE,	NULL, 'f'},
  {"precision",		ARG_REQUIRED,	NULL, 'P'},
  {"suppress-abscissa",	ARG_NONE,	NULL, 's'},
  /* ascii or double */
  {"input-type",	ARG_REQUIRED,	NULL, 'I'},
  {"output-type",	ARG_REQUIRED,	NULL, 'O'},
  /* Long options with no equivalent short option alias */
  {"version",		ARG_NONE,	NULL, 'V' << 8},
  {"help",		ARG_NONE,	NULL, 'h' << 8},
  {NULL, 		0, 		0,     0}
};

/* null-terminated list of options that we don't show to the user */
int hidden_options[] = { (int)'x', 0 };

/* type of data in input and output streams */
typedef enum
{
  T_ASCII, T_SINGLE, T_DOUBLE, T_INTEGER
}
data_type;

data_type input_type = T_ASCII;
data_type output_type = T_ASCII;

const char *progname = "spline"; /* name of this program */

const char *usage_appendage = " [FILE]...\n\
With no FILE, or when FILE is -, read standard input.\n";

/* forward references */
bool do_bessel ____P ((FILE *input, int ydimension, int auto_abscissa, double auto_t, double auto_delta, double first_t, double last_t, double spacing_t, int precision, bool suppress_abscissa));
bool is_monotonic ____P ((int n, double *t));
bool read_data ____P ((FILE *input, int *len, int *used, int auto_abscissa, double auto_t, double auto_delta, double **t, int ydimension, double **y, double **z));
bool read_float ____P((FILE *input, double *dptr));
bool skip_whitespace ____P ((FILE *stream));
bool write_point ____P((double t, double *y, int ydimension, int precision, bool suppress_abscissa));
double interpolate ____P ((int n, double *t, double *y, double *z, double x, double tension, bool periodic));
double quotient_sin_func ____P((double x, double y));
double quotient_sinh_func ____P((double x, double y));
double sin_func ____P((double x));
double sinh_func ____P((double x));
double tan_func ____P((double x));
double tanh_func ____P((double x));
int read_point ____P ((FILE *input, double *t, double *y, int ydimension, bool *first_point, int auto_abscissa, double *auto_t, double auto_delta, double *stored));
void do_bessel_range ____P ((double abscissa0, double abscissa1, double *value0, double *value1, double *slope0, double *slope1, double first_t, double last_t, double spacing_t, int ydimension, int precision, bool endit, bool suppress_abscissa));
void do_spline ____P ((int used, int len, double **t, int ydimension, double **y, double **z, double tension, bool periodic, bool spec_boundary_condition, double boundary_condition, int precision, double first_t, double last_t, double spacing_t, int no_of_intervals, bool spec_first_t, bool spec_last_t, bool spec_spacing_t, bool spec_no_of_intervals, bool suppress_abscissa));
void fit ____P ((int n, double *t, double *y, double *z, double k, double tension, bool periodic));
void maybe_emit_oob_warning ____P ((void));
void non_monotonic_error ____P((void));
void output_dataset_separator ____P ((void));
void set_format_type ____P ((char *s, data_type *typep));
/* from libcommon */
extern void display_usage ____P((const char *progname, const int *omit_vals, const char *appendage, bool fonts));
extern void display_version ____P((const char *progname)); 
extern voidptr_t xcalloc ____P ((size_t nmemb, size_t size));
extern voidptr_t xmalloc ____P ((size_t size));
extern voidptr_t xrealloc ____P ((voidptr_t p, size_t length));
extern char *xstrdup ____P ((const char *s));


int
#ifdef _HAVE_PROTOS
main (int argc, char *argv[])
#else
main (argc, argv)
     int argc;
     char *argv[];
#endif
{
  int option;
  int opt_index;
  int errcnt = 0;		/* errors encountered */
  bool show_version = false;	/* remember to show version message */
  bool show_usage = false;	/* remember to output usage message */
  bool dataset_follows;

  /* parameters controlled by command line options: */
  bool filter = false;		/* act as a filter (cubic Bessel)? */
  bool periodic = false;	/* spline should be periodic? */
  bool spec_boundary_condition = false;	/* user-specified boundary cond'n? */
  bool spec_first_t = false, spec_last_t = false, spec_spacing_t = false;
  bool spec_no_of_intervals = false; /* user-specified number of intervals? */
  bool suppress_abscissa = false; /* for each point, print ordinate only? */
  double boundary_condition = 1.0; /* force  y''_1 = k * y''_0, etc. */
  double delta_t = 1.0;		/* increment of auto abscissa */
  double first_t = 0.0, last_t = 0.0, spacing_t = 0.0; /* values of limits */
  double tension = 0.0;		/* `tension' parameter */
  double t_start = 0.0;		/* start of auto abscissa */
  int auto_abscissa = AUTO_NONE; /* automatic generation of abscissa? */
  int no_of_intervals = 100;	/* no. of intervals to divide abs. range */
  int precision = 6;		/* default no. of significant digits printed */
  int ydimension = 1;		/* dimension of each point's ordinate */

  /* used in argument parsing */
  double local_first_t, local_last_t, local_spacing_t;
  double local_t_start, local_delta_t;
  int local_precision;

  for ( ; ; )
    {
      option = getopt_long (argc, argv, "fpsAd:I:O:P:k:n:t:x:T:a::", long_options, &opt_index);
      if (option == 0)
	option = long_options[opt_index].val;
      
      switch (option)
	{
	  /* ----------- options with no argument --------------*/

	case 'p':		/* construct periodic, i.e., closed spline */
	  periodic = true;
	  break;
	case 'f':		/* act as filter */
	  filter = true;
	  break;
	case 's':		/* don't output t values */
	  suppress_abscissa = true;
	  break;
	case 'A':		/* delta t = inter-y distance */
	  auto_abscissa = AUTO_BY_DISTANCE;
	  t_start = 0.0;
	  break;
	case 'V' << 8:		/* Version */
	  show_version = true;
	  break;
	case 'h' << 8:		/* Help */
	  show_usage = true;
	  break;

	  /*--------------options with a single argument--------*/

	case 'I':
	  set_format_type (optarg, &input_type);
	  break;
	case 'O':
	  set_format_type (optarg, &output_type);
	  break;
	case 'd':		/* dimensionality of ordinate variable */
	  if (sscanf (optarg, "%d", &ydimension) <= 0 || ydimension < 1)
	    {
	      fprintf (stderr, 
		       "%s: error: bad ordinate dimension `%s' (must be positive integer)\n", 
		       progname, optarg);
	      errcnt++;
	    }
	  break;
	case 'k':
	  if (sscanf (optarg, "%lf", &boundary_condition) <= 0)
	    {
	      fprintf (stderr, 
		       "%s: error: bad boundary condition argument `%s'\n",
		       progname, optarg);
	      errcnt++;
	    }
	  else
	    spec_boundary_condition = true;
	  break;
	case 'T':
	  if (sscanf (optarg, "%lf", &tension) <= 0)
	    {
	      fprintf (stderr, 
		       "%s: error: bad tension argument `%s'\n",
		       progname, optarg);
	      errcnt++;
	    }
	  break;
	case 'n':		/* number of intervals */
	  if (sscanf (optarg, "%d", &no_of_intervals) <= 0)
	    {
	      fprintf (stderr, 
		       "%s: error: bad requested number of intervals `%s'\n", 
		       progname, optarg);
	      errcnt++;
	    }
	  else
	    spec_no_of_intervals = true;
	  break;
	case 'P':		/* precision */
	  if (sscanf (optarg, "%d", &local_precision) <= 0)
	    {
	      fprintf (stderr, "%s: error: bad requested precision `%s' (must be positive integer)\n", 
		       progname, optarg);
	      errcnt++;
	    }
	  else
	    {
	      if (local_precision <= 0)
		fprintf (stderr, 
			 "%s: ignoring bad precision value `%s' (must be positive integer)\n",
			 progname, optarg);
	      else
		precision = local_precision;
	    }
	  break;

	  /*------------options with 0 or more args ----------*/

	case 'a':		/* Auto-abscissa, ARG OPTIONAL [0,1,2] */
	  auto_abscissa = AUTO_INCREMENT;
	  if (optind >= argc)
	    break;
	  if (sscanf (argv[optind], "%lf", &local_delta_t) <= 0)
	    break;
	  delta_t = local_delta_t;
	  optind++;	/* tell getopt we recognized delta_t */
	  if (optind >= argc)
	    break;
	  if (sscanf (argv [optind], "%lf", &local_t_start) <= 0)
	    break;
	  t_start = local_t_start;
	  optind++;	/* tell getopt we recognized t_start */
	  break;

	  /*--------------options with 1 or more arguments------*/

	case 't':		/* t axis limits, ARG REQUIRED [1,2,3] */
	case 'x':		/* obsolescent variant */
	  if (sscanf (optarg, "%lf", &local_first_t) <= 0)
	    break;
	  first_t = local_first_t;
	  spec_first_t = true;
	  if (optind >= argc)
	    break;
	  if (sscanf (argv [optind], "%lf", &local_last_t) <= 0)
	    break;
	  last_t = local_last_t;
	  spec_last_t = true;
	  optind++;	/* tell getopt we recognized last_t */
	  if (optind >= argc)
	    break;
	  if (sscanf (argv [optind], "%lf", &local_spacing_t) <= 0)
	    break;
	  spacing_t = local_spacing_t;
	  spec_spacing_t = true;
	  optind++;	/* tell getopt we recognized spacing_t */
	  break;

	  /*---------------- End of options ----------------*/

	default:		/* Default, unknown option */
	  errcnt++;
	  break;
	}			/* endswitch */

      if ((option == EOF))
	{
	  errcnt--;
	  break;		/* break out of option processing */
	}
    }
				/* endwhile */
  if (errcnt > 0)
    {
      fprintf (stderr, "Try `%s --help' for more information\n", progname);
      return EXIT_FAILURE;
    }
  if (show_version)
    {
      display_version (progname);
      return EXIT_SUCCESS;
    }
  if (show_usage)
    {
      display_usage (progname, hidden_options, usage_appendage, false);
      return EXIT_SUCCESS;
    }

  /* Some sanity checks on user-supplied options. */

  if (no_of_intervals < 1)
    {
      fprintf (stderr, 
	       "%s: error: cannot subdivide abscissa range into %d intervals\n", 
	       progname, no_of_intervals);
      return EXIT_FAILURE;
    }

  if (periodic)
    {
      if (spec_boundary_condition)
	fprintf (stderr, 
		 "%s: for periodic splines, setting of boundary condition not supported\n", 
		 progname);
      boundary_condition = 0.0;
    }

  if (filter)
    /* acting as a filter, so use cubic Bessel interpolation */
    {
      if (!spec_first_t || !spec_last_t)
	{
	  fprintf (stderr,
		   "%s: error: acting as filter, must specify abscissa range with -t option\n",
		   progname);
	  return EXIT_FAILURE;
	}

      if (!spec_spacing_t) 
	spacing_t = (last_t - first_t) / no_of_intervals;
      else			/* user specified spacing */
	{
	  if (spec_no_of_intervals)
	    fprintf (stderr, "%s: ignoring specified number of intervals\n",
		     progname);
	  if ((last_t - first_t) * spacing_t < 0.0)
	    {
	      fprintf (stderr, "%s: specified spacing is of wrong sign, corrected\n",
		       progname);
	      spacing_t = -spacing_t;
	    }

	  /* N.B. if spacing specified, should optionally contract first_t and
	     last_t to make them integer multiples of spacing; cf. graph */
	}
      
      if (spec_boundary_condition)
	fprintf (stderr, 
		 "%s: acting as filter, so setting of boundary condition not supported\n",
		 progname);
      if (tension != 0.0)
	fprintf (stderr, 
		 "%s: acting as filter, so nonzero tension not supported\n",
		 progname);
      if (periodic)
	fprintf (stderr, 
		 "%s: acting as filter, so periodicity not supported\n",
		 progname);

      if (optind < argc)
	{
	  /* call do_bessel() on each file specified on the command line,
	     generating a spline from each dataset in the file */
	  for (; optind < argc; optind++)
	    {
	      FILE *data_file;
	      
	      /* open file, treating "-" as stdin */
	      if (strcmp (argv[optind], "-") == 0)
		data_file = stdin;
	      else
		{
		  data_file = fopen (argv[optind], "r");
		  if (data_file == NULL)
		    {
		      fprintf (stderr, "%s: %s: %s\n", progname, argv[optind], strerror(errno));
		      return EXIT_FAILURE;
		    }
		}		

	      /* loop through datasets in file (may be more than one) */
	      do
		{
		  dataset_follows = do_bessel (data_file, ydimension,
					       auto_abscissa, t_start, delta_t,
					       first_t, last_t, spacing_t, 
					       precision, suppress_abscissa);

		  /* output a separator between successive datasets */
		  if (dataset_follows || (optind + 1 != argc))
		    output_dataset_separator();
		  
		} while (dataset_follows);

	      /* close file */
	      if (data_file != stdin) /* don't close stdin */
		{
		  if (fclose (data_file) < 0)
		    {
		      fprintf (stderr, 
			       "%s: error: couldn't close input file `%s'\n",
			       progname, argv[optind]);
		      return EXIT_FAILURE;
		    }
		}
	    }
	}
      else			/* no files spec'd, read stdin instead */
	/* loop through datasets read from stdin (may be more than one) */
	do
	  {
	    dataset_follows = do_bessel (stdin, ydimension,
					 auto_abscissa, t_start, delta_t,
					 first_t, last_t, spacing_t, 
					 precision, suppress_abscissa);
	    
	    /* output a separator between successive datasets */
	    if (dataset_follows)
	      output_dataset_separator();
	  }
	while (dataset_follows);	/* keep going if no EOF yet */
    }

  else
    /* not acting as filter, so use spline interpolation (w/ tension) */
    {
      double *t, **y, **z;	/* ordinate, abscissa, 2nd derivative arrays */
      int i, len, used;

      if (optind < argc)	/* files spec'd on command line */
	{

	  /* call do_spline() on each file specified on the command line,
	     generating a spline from each dataset contained in the file */
	  for (; optind < argc; optind++)
	    {
	      FILE *data_file;
	      
	      /* open file, treat "-" as meaning stdin */
	      if (strcmp (argv[optind], "-") == 0)
		data_file = stdin;
	      else
		{
		  data_file = fopen (argv[optind], "r");
		  if (data_file == NULL)
		    {
		      fprintf (stderr, "%s: error: couldn't open file `%s'\n",
			       progname, argv[optind]);
		      return EXIT_FAILURE;
		    }
		}
	      
	      /* loop through datasets in file (may be more than one) */
	      do
		{
		  len = 16;	/* initial value of storage length */
		  used = -1;	/* initial value of array size, minus 1 */
	      
		  t = (double *)xmalloc (sizeof(double) * len);
		  y = (double **)xmalloc (sizeof(double *) * ydimension);
		  z = (double **)xmalloc (sizeof(double *) * ydimension);
		  for (i = 0; i < ydimension; i++)
		    {
		      y[i] = (double *)xmalloc (sizeof(double) * len);
		      z[i] = (double *)xmalloc (sizeof(double) * len);
		    }
		  
		  dataset_follows = read_data (data_file, &len, &used, 
					       auto_abscissa, t_start, delta_t,
					       &t, ydimension, y, z);
		  /* read_data() may reallocate t,y[*],z[*], and update
		     len, used; on exit, used + 1 is number of data points */
		  
		  /* spline the dataset and output interpolating points */
		  do_spline (used, len, 
			     &t, ydimension, y, z, tension, periodic,
			     spec_boundary_condition, boundary_condition, 
			     precision,
			     first_t, last_t, spacing_t, no_of_intervals,
			     spec_first_t, spec_last_t, spec_spacing_t, 
			     spec_no_of_intervals, suppress_abscissa);

		  /* output a separator between successive datasets */
		  if (dataset_follows || (optind + 1 != argc))
		    output_dataset_separator();
		  
		  free (z);
		  free (y);
		  free (t);
		}
	      while (dataset_follows);	/* keep going if no EOF yet */
	      
	      /* close file */
	      if (data_file != stdin) /* don't close stdin */
		{
		  if (fclose (data_file) < 0)
		    {
		      fprintf (stderr, 
			       "%s: error: couldn't close input file `%s'\n",
			       progname, argv[optind]);
		      return EXIT_FAILURE;
		    }
		}
	    }
	}
      else			/* no files spec'd, read stdin instead */
	/* loop through datasets read from stdin (may be more than one) */
	do
	  {
	    len = 16;		/* initial value for array size */
	    used = -1;	/* initial number of stored points, minus 1 */
	    
	    t = (double *)xmalloc (sizeof(double) * len);
	    y = (double **)xmalloc (sizeof(double *) * ydimension);
	    z = (double **)xmalloc (sizeof(double *) * ydimension);
	    for (i = 0; i < ydimension; i++)
	      {
		y[i] = (double *)xmalloc (sizeof(double) * len);
		z[i] = (double *)xmalloc (sizeof(double) * len);
	      }
	    
	    dataset_follows = read_data (stdin, &len, &used, 
				     auto_abscissa, t_start, delta_t, 
				     &t, ydimension, y, z);
	    /* read_data() may reallocate t,y[*],z[*], and update len,
	       used; on exit, used + 1 is number of data points */
	    
	    /* spline the dataset and output interpolating points */
	    do_spline (used, len, 
		       &t, ydimension, y, z, tension, periodic,
		       spec_boundary_condition, boundary_condition, precision,
		       first_t, last_t, spacing_t, no_of_intervals,
		       spec_first_t, spec_last_t, spec_spacing_t, 
		       spec_no_of_intervals, suppress_abscissa);
	    
	    /* output a separator between successive datasets */
	    if (dataset_follows)
	      output_dataset_separator();
	    
	    for (i = 0; i < ydimension; i++)
	      {
		free (z[i]);
		free (y[i]);
	      }
	    free (z);
	    free (y);
	    free (t);
	  }
	while (dataset_follows);	/* keep going if no EOF yet */
      
    }

  return EXIT_SUCCESS;
}


void
#ifdef _HAVE_PROTOS
set_format_type (char *s, data_type *typep)
#else
set_format_type (s, typep)
     char *s;
     data_type *typep;
#endif
{
  switch (s[0])
    {
    case 'a':
    case 'A':
      *typep = T_ASCII;
      break;
    case 'f':
    case 'F':
      *typep = T_SINGLE;
      break;
    case 'd':
    case 'D':
      *typep = T_DOUBLE;
      break;
    case 'i':
    case 'I':
      *typep = T_INTEGER;
      break;
    default:
      {
	fprintf (stderr, "%s: error: invalid data format type `%s'\n",
		 progname, s);
	exit (EXIT_FAILURE);
      }
      break;
    }
}


/* fit() computes the array z[] of second derivatives at the knots, i.e.,
   internal data points.  The abscissa array t[] and the ordinate array y[]
   are specified.  On entry, have n+1 >= 2 points in the t, y, z arrays,
   numbered 0..n.  The knots are numbered 1..n-1 as in Kincaid and Cheney.
   In the periodic case, the final knot, i.e., (t[n-1],y[n-1]), has the
   property that y[n-1]=y[0]; moreover, y[n]=y[1].  The number of points
   supplied by the user was n+1 in the non-periodic case, and n in the
   periodic case.  When this function is called, n>=1 in the non-periodic
   case, and n>=2 in the periodic case. */

/* Algorithm: the n-1 by n-1 tridiagonal matrix equation for the vector of
   2nd derivatives at the knots is reduced to upper diagonal form.  At that
   point the diagonal entries (pivots) of the upper diagonal matrix are in
   the vector u[], and the vector on the right-hand side is v[].  That is,
   the equation is of the form Ay'' = v, where a_(ii) = u[i], and a_(i,i+1)
   = alpha[i].  Here i=1..n-1 indexes the set of knots.  The matrix
   equation is solved by back-substitution for y''[], i.e., for z[]. */

void
#ifdef _HAVE_PROTOS
fit (int n, double *t, double *y, double *z, double k, double tension,
     bool periodic)
#else
fit (n, t, y, z, k, tension, periodic)
     int n;
     double *t, *y, *z;
     double k;			/* y''_1 = k y''_0, etc. */
     double tension;
     bool periodic;
#endif
{
  double *h, *b, *u, *v, *alpha, *beta;
  double *uu = NULL, *vv = NULL, *s = NULL;
  int i;

  if (n == 1)			/* exactly 2 points, use straight line */
    {
      z[0] = z[1] = 0.0;
      return;
    }

  h = (double *)xmalloc (sizeof(double) * n);
  b = (double *)xmalloc (sizeof(double) * n);
  u = (double *)xmalloc (sizeof(double) * n);
  v = (double *)xmalloc (sizeof(double) * n);
  alpha = (double *)xmalloc (sizeof(double) * n);
  beta = (double *)xmalloc (sizeof(double) * n);

  if (periodic)
    {
      s = (double *)xmalloc (sizeof(double) * n); 
      uu = (double *)xmalloc (sizeof(double) * n); 
      vv = (double *)xmalloc (sizeof(double) * n); 
    }

  for (i = 0; i <= n - 1 ; ++i)
    {
      h[i] = t[i + 1] - t[i];
      b[i] = 6.0 * (y[i + 1] - y[i]) / h[i]; /* for computing RHS */
    }

  if (tension < 0.0)		/* must rule out sin(tension * h[i]) = 0 */
    {
      for (i = 0; i <= n - 1 ; ++i)
	if (sin (tension * h[i]) == 0.0)
	  {
	    fprintf (stderr, "%s: error: specified negative tension value is singular\n", progname);
	    exit (EXIT_FAILURE);
	  }
    }
  if (tension == 0.0)
    {
      for (i = 0; i <= n - 1 ; ++i)
	{
	  alpha[i] = h[i];	/* off-diagonal = alpha[i] to right */
	  beta[i] = 2.0 * h[i];	/* diagonal = beta[i-1] + beta[i] */
	}
    }
  else
    if (tension > 0.0)
      /* `positive' (really real) tension, use hyperbolic trig funcs */
      {
	for (i = 0; i <= n - 1 ; ++i)
	  {
	    double x = tension * h[i];
	    double xabs = (x < 0.0 ? -x : x);

	    if (xabs < TRIG_ARG_MIN)
	      /* hand-compute (6/x^2)(1-x/sinh(x)) and (3/x^2)(x/tanh(x)-1)
                 to improve accuracy; here `x' is tension * h[i] */
	      {
		alpha[i] = h[i] * sinh_func(x);
		beta[i] = 2.0 * h[i] * tanh_func(x);
	      }
	    else if (xabs > TRIG_ARG_MAX)
	      /* in (6/x^2)(1-x/sinh(x)) and (3/x^2)(x/tanh(x)-1),
		 approximate x/sinh(x) and x/tanh(x) by 2|x|exp(-|x|)
		 and |x|, respectively */
	      {
		int sign = (x < 0.0 ? -1 : 1);

		alpha[i] = ((6.0 / (tension * tension))
			   * ((1.0 / h[i]) - tension * 2 * sign * exp(-xabs)));
		beta[i] = ((6.0 / (tension * tension))
			   * (tension - (1.0 / h[i])));
	      }
	    else
	      {
		alpha[i] = ((6.0 / (tension * tension))
			    * ((1.0 / h[i]) - tension / sinh(x)));
		beta[i] = ((6.0 / (tension * tension))
			   * (tension / tanh(x) - (1.0 / h[i])));
	      }
	  }
      }
    else				/* tension < 0 */
      /* `negative' (really imaginary) tension,  use circular trig funcs */
      {
	for (i = 0; i <= n - 1 ; ++i)
	  {
	    double x = tension * h[i];
	    double xabs = (x < 0.0 ? -x : x);

	    if (xabs < TRIG_ARG_MIN)
	      /* hand-compute (6/x^2)(1-x/sin(x)) and (3/x^2)(x/tan(x)-1)
                 to improve accuracy; here `x' is tension * h[i] */
	      {
		alpha[i] = h[i] * sin_func(x);
		beta[i] = 2.0 * h[i] * tan_func(x);
	      }
	    else
	      {
		alpha[i] = ((6.0 / (tension * tension))
		           * ((1.0 / h[i]) - tension / sin(x)));
		beta[i] = ((6.0 / (tension * tension))
			   * (tension / tan(x) - (1.0 / h[i])));
	      }
	  }
      }
  
  if (!periodic && n == 2)
      u[1] = beta[0] + beta[1] + 2 * k * alpha[0];
  else
    u[1] = beta[0] + beta[1] + k * alpha[0];

  v[1] = b[1] - b[0];
  
  if (u[1] == 0.0)
    {
      fprintf (stderr, 
	       "%s: error: as posed, problem of computing spline is singular\n",
	       progname);
      exit (EXIT_FAILURE);
    }

  if (periodic)
    {
      s[1] = alpha[0];
      uu[1] = 0.0;
      vv[1] = 0.0;
    }

  for (i = 2; i <= n - 1 ; ++i)
    {
      u[i] = (beta[i] + beta[i - 1]
	      - alpha[i - 1] * alpha[i - 1] / u[i - 1]
	      + (i == n - 1 ? k * alpha[n - 1] : 0.0));

      if (u[i] == 0.0)
	{
	  fprintf (stderr, 
		   "%s: error: as posed, problem of computing spline is singular\n",
		   progname);
	  exit (EXIT_FAILURE);
	}


      v[i] = b[i] - b[i - 1] - alpha[i - 1] * v[i - 1] / u[i - 1];

      if (periodic)
	{
	  s[i] = - s[i-1] * alpha[i-1] / u[i-1];
	  uu[i] = uu[i-1] - s[i-1] * s[i-1] / u[i-1];
	  vv[i] = vv[i-1] - v[i-1] * s[i-1] / u[i-1];
	}
    }
      
  if (!periodic)
    {
      /* fill in 2nd derivative array */
      z[n] = 0.0;
      for (i = n - 1; i >= 1; --i)
	z[i] = (v[i] - alpha[i] * z[i + 1]) / u[i];
      z[0] = 0.0;
      
      /* modify to include boundary condition */
      z[0] = k * z[1];
      z[n] = k * z[n - 1];
    }
  else		/* periodic */
    {
      z[n-1] = (v[n-1] + vv[n-1]) / (u[n-1] + uu[n-1] + 2 * s[n-1]);
      for (i = n - 2; i >= 1; --i)
	z[i] = ((v[i] - alpha[i] * z[i + 1]) - s[i] * z[n-1]) / u[i];

      z[0] = z[n-1];
      z[n] = z[1];
    }

  if (periodic)
    {
      free (vv);
      free (uu);
      free (s);
    }
  free (beta);
  free (alpha);
  free (v);
  free (u);
  free (b);
  free (h);
}


/* interpolate() computes an approximate ordinate value for a given
   abscissa value, given an array of data points (stored in t[] and y[],
   containing abscissa and ordinate values respectively), and z[], the
   array of 2nd derivatives at the knots (i.e. internal data points).
   
   On entry, have n+1 >= 2 points in the t, y, z arrays, numbered 0..n.
   The number of knots (i.e. internal data points) is n-1; they are
   numbered 1..n-1 as in Kincaid and Cheney.  In the periodic case, the
   final knot, i.e., (t[n-1],y[n-1]), has the property that y[n-1]=y[0];
   also, y[n]=y[1].  The number of data points supplied by the user was n+1
   in the non-periodic case, and n in the periodic case.  When this
   function is called, n>=1 in the non-periodic case, and n>=2 in the
   periodic case. */

double
#ifdef _HAVE_PROTOS
interpolate (int n, double *t, double *y, double *z, double x, 
	     double tension, bool periodic)
#else
interpolate (n, t, y, z, x, tension, periodic)
     int n;
     double *t, *y, *z, x;
     double tension;
     bool periodic;
#endif
{
  double diff, updiff, reldiff, relupdiff, h;
  double value;
  int is_ascending = (t[n-1] < t[n]);
  int i = 0, k;

  /* in periodic case, map x to t[0] <= x < t[n] */
  if (periodic && (x - t[0]) * (x - t[n]) > 0.0)
    x -= ((int)(floor( (x - t[0]) / (t[n] - t[0]) )) * (t[n] - t[0]));

  /* do binary search to find interval */
  for (k = n - i; k > 1;)
    {
      if (is_ascending ? x >= t[i + (k>>1)] : x <= t[i + (k>>1)])
	{
	  i = i + (k>>1);
	  k = k - (k>>1);
	}
      else
	k = k>>1;
    }

  /* at this point, x is between t[i] and t[i+1] */
  h = t[i + 1] - t[i];
  diff = x - t[i];
  updiff = t[i+1] - x;
  reldiff = diff / h;
  relupdiff = updiff / h;

  if (tension == 0.0)
  /* evaluate cubic polynomial in nested form */
    value =  y[i] 
      + diff
	* ((y[i + 1] - y[i]) / h - h * (z[i + 1] + z[i] * 2.0) / 6.0
	   + diff * (0.5 * z[i] + diff * (z[i + 1] - z[i]) / (6.0 * h)));
  
  else if (tension > 0.0)
    /* `positive' (really real) tension, use sinh's */
    {
      if (fabs(tension * h) < TRIG_ARG_MIN)
	/* hand-compute (6/y^2)(sinh(xy)/sinh(y) - x) to improve accuracy;
	   here `x' means reldiff or relupdiff and `y' means tension*h */
	value = (y[i] * relupdiff + y[i+1] * reldiff
		 + ((z[i] * h * h / 6.0) 
		    * quotient_sinh_func (relupdiff, tension * h))
		 + ((z[i+1] * h * h / 6.0) 
		    * quotient_sinh_func (reldiff, tension * h)));
      else if (fabs(tension * h) > TRIG_ARG_MAX)
	/* approximate 1/sinh(y) by 2 sgn(y) exp(-|y|) */
	{
	  int sign = (h < 0.0 ? -1 : 1);

	  value = (((z[i] * (exp (tension * updiff - sign * tension * h) 
			     + exp (-tension * updiff - sign * tension * h))
		     + z[i + 1] * (exp (tension * diff - sign * tension * h) 
				   + exp (-tension * diff - sign * tension*h)))
		    * (sign / (tension * tension)))
		   + (y[i] - z[i] / (tension * tension)) * (updiff / h)
		   + (y[i + 1] - z[i + 1] / (tension * tension)) * (diff / h));
	}
      else
	value = (((z[i] * sinh (tension * updiff) 
		   + z[i + 1] * sinh (tension * diff))
		  / (tension * tension * sinh (tension * h)))
		 + (y[i] - z[i] / (tension * tension)) * (updiff / h)
		 + (y[i + 1] - z[i + 1] / (tension * tension)) * (diff / h));
    }
  else
    /* `negative' (really imaginary) tension, use sin's */
    {
      if (fabs(tension * h) < TRIG_ARG_MIN)
	/* hand-compute (6/y^2)(sin(xy)/sin(y) - x) to improve accuracy;
	   here `x' means reldiff or relupdiff and `y' means tension*h */
	value = (y[i] * relupdiff + y[i+1] * reldiff
		 + ((z[i] * h * h / 6.0) 
		    * quotient_sin_func (relupdiff, tension * h))
		 + ((z[i+1] * h * h / 6.0) 
		    * quotient_sin_func (reldiff, tension * h)));
      else
	value = (((z[i] * sin (tension * updiff) 
		   + z[i + 1] * sin (tension * diff))
		  / (tension * tension * sin (tension * h)))
		 + (y[i] - z[i] / (tension * tension)) * (updiff / h)
		 + (y[i + 1] - z[i + 1] / (tension * tension)) * (diff / h));
    }
  
  return value;
}


/* is_monotonic() check whether an array of data points, read in by
   read_data(), has monotonic abscissa values. */
bool
#ifdef _HAVE_PROTOS
is_monotonic (int n, double *t)
#else
is_monotonic (n, t)
     int n;			/* array size n+1, n>=1 */
     double *t;
#endif
{
  bool is_ascending;

  if (t[n-1] < t[n])
    is_ascending = true;
  else if (t[n-1] > t[n])
    is_ascending = false;
  else				/* equality */
    return false;

  while (n>0)
    {
      n--;
      if (is_ascending == true ? t[n] >= t[n+1] : t[n] <= t[n+1])
	return false;
    };
  return true;
}


/* read_float reads a single floating point quantity from an input file
   (in either ascii or double format).  Return value indicates whether it
   was read successfully. */
bool 
#ifdef _HAVE_PROTOS
read_float (FILE *input, double *dptr)
#else
read_float (input, dptr)
     FILE *input;
     double *dptr;
#endif
{
  int num_read;
  double dval;
  float fval;
  int ival;

  switch (input_type)
    {
    case T_ASCII:
    default:
      num_read = fscanf (input, "%lf", &dval);
      break;
    case T_SINGLE:
      num_read = fread ((voidptr_t) &fval, sizeof (fval), 1, input);
      dval = fval;
      break;
    case T_DOUBLE:
      num_read = fread ((voidptr_t) &dval, sizeof (dval), 1, input);
      break;
    case T_INTEGER:
      num_read = fread ((voidptr_t) &ival, sizeof (ival), 1, input);
      dval = ival;
      break;
    }
  if (num_read <= 0)
    return false;
  if (dval != dval)
    {
      fprintf (stderr, "%s: encountered a NaN (not-a-number) in binary input file, treating as EOF\n",
	       progname);
      return false;		/* effectively eof */
    }
  else
    {
      *dptr = dval;
      return true;
    }
}

/* Emit a pair of doubles, in specified output representation.  Inform user
   if any of the emitted values was out-of-bounds for single-precision or
   integer format. */
bool 
#ifdef _HAVE_PROTOS
write_point (double t, double *y, int ydimension, int precision, bool suppress_abscissa)
#else
write_point (t, y, ydimension, precision, suppress_abscissa)
     double t, *y;
     int ydimension, precision;
     bool suppress_abscissa;
#endif
{
  int i, num_written = 0;
  float ft, fy;
  int it, iy;

  switch (output_type)
    {
    case T_ASCII:
    default:
      if (suppress_abscissa == false)
	num_written += printf ("%.*g ", precision, t);
      for (i = 0; i < ydimension - 1; i++)
	num_written += printf ("%.*g ", precision, y[i]);
      num_written += printf ("%.*g\n", precision, y[ydimension - 1]);
      break;
    case T_SINGLE:
      if (suppress_abscissa == false)
	{
	  ft = FROUND(t);
	  if (ft == FLT_MAX || ft == -(FLT_MAX))
	    {
	      maybe_emit_oob_warning();
	      if (ft == FLT_MAX)
		ft *= 0.99999;	/* kludge */
	    }
	  num_written += fwrite ((voidptr_t) &ft, sizeof (ft), 1, stdout);
	}
      for (i = 0; i < ydimension; i++)
	{
	  fy = y[i];
	  if (fy == FLT_MAX || fy == -(FLT_MAX))
	    {
	      maybe_emit_oob_warning();
	      if (fy == FLT_MAX)
		fy *= 0.99999;	/* kludge */
	    }
	  num_written += fwrite ((voidptr_t) &fy, sizeof (fy), 1, stdout);
	}
      break;
    case T_DOUBLE:
      if (suppress_abscissa == false)
	num_written += fwrite ((voidptr_t) &t, sizeof (t), 1, stdout);
      for (i = 0; i < ydimension; i++)
	num_written += fwrite ((voidptr_t) &(y[i]), sizeof (double), 1, stdout);
      break;
    case T_INTEGER:
      if (suppress_abscissa == false)
	{
	  it = IROUND(t);
	  if (it == INT_MAX || it == -(INT_MAX))
	    {
	      maybe_emit_oob_warning();
	      if (it == INT_MAX)
		it--;
	    }
	  num_written += fwrite ((voidptr_t) &it, sizeof (it), 1, stdout);
	}
      for (i = 0; i < ydimension; i++)
	{
	  iy = IROUND(y[i]);
	  if (iy == INT_MAX || iy == -(INT_MAX))
	    {
	      maybe_emit_oob_warning();
	      if (iy == INT_MAX)
		iy--;
	    }
	  num_written += fwrite ((voidptr_t) &iy, sizeof (iy), 1, stdout);
	}
      break;
    }
  
  return (num_written > 0 ? true : false); /* i.e. return successp */
}

/* read_point() attempts to read a data point from an input file
   (auto-abscissa is supported, as are both ascii and double formats).
   Return value is 0 if a data point was read, 1 if no data point could be
   read (i.e. EOF or garbage in file).  A return value of 2 is special: it
   indicates that an explicit end-of-dataset indicator was seen in the input
   stream.  For an ascii stream this is two newlines in succession; for a
   double stream this is a DBL_MAX, etc. */
int
#ifdef _HAVE_PROTOS
read_point (FILE *input, double *t, double *y, int ydimension, 
	    bool *first_point,
	    int auto_abscissa, double *auto_t, double auto_delta, 
	    double *stored)
#else
read_point (input, t, y, ydimension, first_point, auto_abscissa, auto_t, auto_delta, stored)
     FILE *input;
     double *t, *y;
     int ydimension;
     bool *first_point;
     int auto_abscissa;
     double *auto_t, auto_delta;
     double *stored;
#endif
{
  bool success;
  int i, items_read, lookahead;

 head:

  if (input_type == T_ASCII)
    {
      bool two_newlines;

      /* skip whitespace, up to but not including 2nd newline */
      two_newlines = skip_whitespace (input);
      if (two_newlines)
	/* end-of-dataset indicator */
	return 2;
    }
  if (feof (input))
    return 1;

  if (input_type == T_ASCII)
    {
      lookahead = getc (input);
      ungetc (lookahead, input);
      if (lookahead == (int)'#')	/* comment line */
	{
	  char c;
	  
	  do 
	    {
	      items_read = fread (&c, sizeof (c), 1, input);
	      if (items_read <= 0)
		return 1;	/* EOF */
	    }
	  while (c != '\n');
	  ungetc ((int)'\n', input); /* push back \n at the end of # line */
	  goto head;
	}
    }

  if (auto_abscissa != AUTO_NONE) /* i.e. AUTO_INCREMENT or AUTO_BY_DISTANCE */
    {
      /* read 1st component of y */
      success = read_float (input, &(y[0]));
      if (!success)		/* e.g., EOF */
	return 1;
      if ((input_type == T_DOUBLE && y[0] == DBL_MAX)
	  || (input_type == T_SINGLE && y[0] == (double)FLT_MAX)
	  || (input_type == T_INTEGER && y[0] == (double)INT_MAX))
	/* end-of-dataset indicator */
	return 2;

      /* read other components of y */
      for (i = 1; i < ydimension; i++)
	{
	  success = read_float (input, &(y[i]));
	  if (!success)		/* effectively EOF (could be garbage) */
	    {
	      fprintf (stderr, "%s: input file terminated prematurely\n",
		       progname);
	      return 1;
	    }
	}

      /* t is kept track of, not read from file; two different methods */
      if (auto_abscissa == AUTO_INCREMENT)
	{
	  *t = *auto_t;
	  *auto_t += auto_delta;	/* update */
	}
      else			/* AUTO_BY_DISTANCE */
	{
	  if (*first_point == true)
	    {
	      *t = *auto_t;
	      *first_point = false;
	    }
	  else		/* compute distance to previous point */
	    {
	      double distsq = 0.0;

	      for (i = 0; i < ydimension; i++)
		distsq += (y[i] - stored[i])*(y[i] - stored[i]);
	      *auto_t += sqrt (distsq);
	      *t = *auto_t;
	    }
	  for (i = 0; i < ydimension; i++)	  
	    stored[i] = y[i];	/* store current point */
	}

      /* successfully read all components of y */
      return 0;
    }
  else
    {
      /* read t */
      success = read_float (input, t);
      if (!success)		/* e.g., EOF */
	return 1;
      if ((input_type == T_DOUBLE && *t == DBL_MAX)
	  || (input_type == T_SINGLE && *t == (double)FLT_MAX)
	  || (input_type == T_INTEGER && *t == (double)INT_MAX))
	/* end-of-dataset indicator */
	return 2;

      /* read components of y */
      for (i = 0; i < ydimension; i++)
	{
	  success = read_float (input, &(y[i]));
	  if (!success)		/* effectively EOF (could be garbage) */
	    {
	      fprintf (stderr, "%s: input file terminated prematurely\n",
		       progname);
	      return 1;
	    }
	}

      /* successfully read both t and all components of y */
      return 0;
    }
}

/* read_data() reads a single dataset from an input file, and stores it.
   If the stream is in ascii format, end-of-dataset is signalled by two
   newlines in succession.  If the stream is in double format,
   end-of-dataset is signalled by the occurrence of a DBL_MAX, etc.

   Return value is true if the dataset is ended by an explicit
   end-of-dataset, and false if the dataset is terminated by EOF.  That is,
   return value indicates whether another dataset is expected to follow. */
bool
#ifdef _HAVE_PROTOS
read_data (FILE *input, int *len, int *used, int auto_abscissa,
	   double auto_t, double auto_delta, 
	   double **t, int ydimension, double **y, double **z)
#else
read_data (input, len, used, auto_abscissa, auto_t, auto_delta, t, ydimension, y, z)
     FILE *input;
     int *len, *used;
     int auto_abscissa;
     double auto_t, auto_delta;
     double **t;
     int ydimension;
     double **y, **z;
#endif
{
  bool first = true;
  int i, success;
  double tt, *yy, *stored;

  yy = (double *)xmalloc (sizeof(double) * ydimension);
  stored = (double *)xmalloc (sizeof(double) * ydimension);
  for ( ; ; )
    {
      if ((++ *used) >= *len)
	{
	  *len *= 2;
	  *t = (double *)xrealloc (*t, sizeof(double) * *len);
	  for (i = 0; i < ydimension; i++)
	    {
	      y[i] = (double *)xrealloc (y[i], sizeof(double) * *len);
	      z[i] = (double *)xrealloc (z[i], sizeof(double) * *len);
	    }
	}

      success = read_point (input, &tt, yy, ydimension, &first,
			    auto_abscissa, &auto_t, auto_delta, stored);

      switch (success)
	{
	case 0:			/* good data point */
	  (*t)[*used] = tt;
	  for (i = 0; i < ydimension; i++)
	    y[i][*used] = yy[i];
	  break;
	case 1:			/* end of dataset, EOF seen */
	  (*used)--;
	  free (stored);
	  free (yy);
	  return false;
	case 2:			/* end of dataset, but input continues */
	  (*used)--;
	  free (stored);
	  free (yy);
	  return true;
	}
    }
}


/* do_spline() is the main routine for piecewise cubic spline
   interpolation, supporting both periodicity and a user-specified boundary
   condition parameter.  Nonzero tension may be specified, in which case
   the interpolate() routine, which this calls, will use not cubic
   polynomials but rather expressions involving hyperbolic sines.

   t[] and y[] are the arrays in which the abscissa and ordinate values of
   the user-specified data points are stored, and z[] is the array in which
   the 2nd derivatives at the knots (data points in the interior of the
   interval) will be stored.  used+1 is the effective size of each of these
   arrays.  The number of points supplied by the user was used+1 in the
   non-periodic case.  It was used+0 in the periodic case.  

   The reason that the number of elements is greater by one in the periodic
   case is that the first user-supplied data point occurs also at the end.
   In fact, in the periodic case this function will increment the size of
   the array once more, since the periodic interpolation algorithm requires
   the first two data points, not just the first, to appear at the end. */
void
#ifdef _HAVE_PROTOS
do_spline (int used, int len, double **t, int ydimension, double **y, double **z, 
	   double tension, bool periodic, bool spec_boundary_condition,
	   double k, int precision, double first_t, double last_t, 
	   double spacing_t, int no_of_intervals, bool spec_first_t, 
	   bool spec_last_t, bool spec_spacing_t, 
	   bool spec_no_of_intervals, bool suppress_abscissa)
#else
do_spline (used, len, t, ydimension, y, z, tension, periodic, spec_boundary_condition, k, precision, first_t, last_t, spacing_t, no_of_intervals, spec_first_t, spec_last_t, spec_spacing_t, spec_no_of_intervals, suppress_abscissa)
     int used;			/* used+1 elements stored in (*t)[] etc. */
     int len;			/* length of each array */
     double **t;
     int ydimension;
     double **y, **z;		/* we use ** because may have to realloc */
     double tension;
     bool periodic;
     bool spec_boundary_condition;
     double k;			/* boundary condition: y''_1 = k y''_0, etc. */
     int precision;
     double first_t, last_t, spacing_t; 
     int no_of_intervals;
     bool spec_first_t, spec_last_t, spec_spacing_t, spec_no_of_intervals;
     bool suppress_abscissa;
#endif
{
  int range_count = 0;		/* number of req'd datapoints out of range */
  int lastval = 0;		/* last req'd point = 1st/last data point? */
  int i;

  if (used + 1 == 0)		/* zero data points in array */
    /* don't output anything (i.e. effectively output a null dataset) */
    return;

  if (used+1 == 1)		/* a single data point in array */
    {
      fprintf (stderr, 
	       "%s: cannot construct a spline from a single data point\n", 
	       progname);
      /* don't output anything (i.e. effectively output a null dataset) */
      return;
    }

  if (!periodic && used+1 <= 2)
    {
      if (spec_boundary_condition)
	fprintf (stderr, 
		 "%s: only 2 data points, so ignoring specified boundary condition\n", 
		 progname);
      k = 0.0;
    }

  if (!is_monotonic (used, *t))
    non_monotonic_error();	/* self-explanatory */

  if (periodic)
    {
      bool print_warning = false;
      
      for (i = 0; i < ydimension; i++)
	{
	  if (y[i][used] != y[i][0])
	    print_warning = true;
	  y[i][used] = y[i][0];
	}
      if (print_warning == true)
	fprintf (stderr, "%s: setting final y value equal to initial to ensure periodicity\n", 
		 progname); 

      /* add pseudo-point at end (to accord with periodicity) */
      if (used + 1 >= len)
	{
	  len++;
	  *t = (double *)xrealloc (*t, sizeof(double) * len);
	  for (i = 0; i < ydimension; i++)
	    {
	      y[i] = (double *)xrealloc (y[i], sizeof(double) * len);
	      z[i] = (double *)xrealloc (z[i], sizeof(double) * len);
	    }
	}
      (*t)[used + 1] = (*t)[used] + ((*t)[1] - (*t)[0]);
      for (i = 0; i < ydimension; i++)
	y[i][used + 1] = y[i][1];
    }

  /* compute z[], array of 2nd derivatives at each knot */
  for (i = 0; i < ydimension; i++)
    fit (used + (periodic ? 1 : 0), /* include pseudo-point if any */
	 *t, y[i], z[i], k, tension, periodic);

  if (!spec_first_t) 
    first_t = (*t)[0];
  if (!spec_last_t) 
    last_t = (*t)[used];	/* used+1 data points in all */
  if (!spec_spacing_t) 
    {
      if (no_of_intervals > 0)
	spacing_t = (last_t - first_t) / no_of_intervals;
      else
	spacing_t = 0;		/* won't happen */
    }
  else				/* user specified spacing */
    {
      if ((last_t - first_t) * spacing_t < 0.0)
	{
	  fprintf (stderr, "%s: specified spacing is of wrong sign, corrected\n",
		   progname);
	  spacing_t = -spacing_t;
	}
      if (spec_no_of_intervals)
	fprintf (stderr, "%s: ignoring specified number of intervals\n",
		 progname);
      no_of_intervals = (int)(fabs((last_t - first_t) / spacing_t) + FUZZ);
    }

  if (last_t == (*t)[0])
    lastval = 1;
  else if (last_t == (*t)[used])
    lastval = 2;

  for (i = 0; i <= no_of_intervals; ++i)
    {
      double x;

      x = first_t + spacing_t * i;

      if (i == no_of_intervals)
	{
	  /* avoid numerical fuzz */
	  if (lastval == 1)	/* left end of input */
	    x = (*t)[0];
	  else if (lastval == 2) /* right end of input */
	    x = (*t)[used];
	}

      if (periodic || (x - (*t)[0]) * (x - (*t)[used]) <= 0)
	{
	  int j;
	  double *yy;

	  yy = (double *)xmalloc (sizeof(double) * ydimension); 
	  for (j = 0; j < ydimension; j++)
	    yy[j] = interpolate (used, *t, y[j], z[j], x, 
				 tension, periodic);
	  write_point (x, yy, ydimension, precision, suppress_abscissa);
	  free (yy);
	}
      else
	range_count++;
    }

  switch (range_count)
    {
    case 0:
      break;
    case 1:
      fprintf (stderr, 
	       "%s: one requested point could not be computed (out of data range)\n", 
	       progname);
      break;
    default:
      fprintf (stderr, 
	       "%s: %d requested points could not be computed (out of data range)\n", 
	       progname, range_count);
      break;
    }
}


/* do_bessel() is the main routine for doing real-time cubic Bessel
   interpolation of a dataset.  If the input stream is in ascii format,
   end-of-dataset is signalled by two newlines in succession.  If the
   stream is in double format, end-of-dataset is signalled by the
   occurrence of a DBL_MAX, etc.

   Return value is true if the dataset is ended by an explicit
   end-of-dataset, and false if the dataset is terminated by EOF.  That is,
   return value indicates whether another dataset is expected to follow. */
bool
#ifdef _HAVE_PROTOS
do_bessel (FILE *input, int ydimension, int auto_abscissa, double auto_t, 
	   double auto_delta, double first_t, double last_t, 
	   double spacing_t, int precision, bool suppress_abscissa)
#else
do_bessel (input, ydimension, auto_abscissa, auto_t, auto_delta, first_t, last_t, spacing_t, precision, suppress_abscissa)
     FILE *input;
     int ydimension;
     int auto_abscissa;
     double auto_t, auto_delta;     
     double first_t, last_t, spacing_t;
     int precision;
     bool suppress_abscissa;
#endif
{
  bool first = true;
  double t, *y, *s0, *s1, *s2, *stored;
  double tt[4], **yy;
  int direction = (last_t > first_t ? 1 : -1);
  int state = STATE_ZERO;
  int i, success;

  y = (double *)xmalloc (sizeof(double) * ydimension); 
  s0 = (double *)xmalloc (sizeof(double) * ydimension); 
  s1 = (double *)xmalloc (sizeof(double) * ydimension); 
  s2 = (double *)xmalloc (sizeof(double) * ydimension); 
  yy = (double **)xmalloc (4 * sizeof(double *));
  stored = (double *)xmalloc (sizeof(double) * ydimension);
  for (i = 0; i < 4; i++)
    yy[i] = (double *)xmalloc (ydimension * sizeof(double));

  for ( ; ; )
    {
      success = read_point (input, &t, y, ydimension, &first,
			    auto_abscissa, &auto_t, auto_delta, stored);
      
      if (success == 0)		/* got a new data point */
	{
	  /* use our DFA to process the new data point */
	  switch (state)
	    {
	    case STATE_ZERO:	/* just store point */
	      tt[0] = t;
	      for (i = 0; i < ydimension; i++)
		yy[0][i] = y[i];
	      state = STATE_ONE;
	      break;
	    case STATE_ONE:	/* just store point */
	      tt[1] = t;
	      if (direction * (tt[1] - tt[0]) <= 0)
		non_monotonic_error();
	      for (i = 0; i < ydimension; i++)
		yy[1][i] = y[i];
	      state = STATE_TWO;
	      break;
	    case STATE_TWO:	/* store point, and process */
	      tt[2] = t;
	      if (direction * (tt[2] - tt[1]) <= 0)
		non_monotonic_error();
	      for (i = 0; i < ydimension; i++)
		{
		  yy[2][i] = y[i];
		  
		  /* fit parabola through 0,1,2 to compute slopes at 0,1*/
		  s0[i] = (((tt[1]-tt[0]) * ((yy[0][i]-yy[2][i]) / (tt[0]-tt[2]))
			 + (tt[0]-tt[2]) * ((yy[1][i]-yy[0][i]) / (tt[1]-tt[0])))
			/ (tt[1]-tt[2]));
		  s1[i] = (((tt[2]-tt[1]) * ((yy[1][i]-yy[0][i]) / (tt[1]-tt[0]))
			 + (tt[1]-tt[0]) * ((yy[2][i]-yy[1][i]) / (tt[2]-tt[1])))
			/ (tt[2]-tt[0]));
		}

	      /* output spline points in range between points 0, 1 */
	      do_bessel_range (tt[0], tt[1], yy[0], yy[1], s0, s1,
			       first_t, last_t, spacing_t, 
			       ydimension, precision, false,
			       suppress_abscissa);
	      
	      state = STATE_THREE;
	      break;
	    case STATE_THREE:	/* store point, and process */
	      tt[3] = t;
	      if (direction * (tt[3] - tt[2]) <= 0)
		non_monotonic_error();
	      for (i = 0; i < ydimension; i++)
		{
		  yy[3][i] = y[i];
		  
		  /* fit parabola through points 1,2,3 to compute slope at 2 */
		  s2[i] = (((tt[3]-tt[2]) * ((yy[2][i]-yy[1][i]) / (tt[2]-tt[1]))
			 + (tt[2]-tt[1]) * ((yy[3][i]-yy[2][i]) / (tt[3]-tt[2])))
			/ (tt[3]-tt[1]));
		}
	      
	      /* output spline points in range between points 1, 2 */
	      do_bessel_range (tt[1], tt[2], yy[1], yy[2], s1, s2, 
			       first_t, last_t, spacing_t, 
			       ydimension, precision, false,
			       suppress_abscissa);
	      
	      /* shift points down */
	      tt[0] = tt[1];
	      tt[1] = tt[2];
	      tt[2] = tt[3];
	      for (i = 0; i < ydimension; i++)
		{
		  yy[0][i] = yy[1][i];
		  yy[1][i] = yy[2][i];
		  yy[2][i] = yy[3][i];
		  /* shift down the only knot slope worth keeping */
		  s1[i] = s2[i];
		}

	      break;
	    }
	}
      else		/* didn't get a point, so wind things up */
	{
	  switch (state)
	    {
	    case STATE_ZERO:
	      /* silently output a null dataset (i.e., don't output anything) */
	      break;
	    case STATE_ONE:
	      fprintf (stderr, "%s: cannot construct a spline from a single data point\n", 
		       progname);
	      /* output a null dataset (i.e., don't output anything) */
	      break;
	    case STATE_TWO:
	      /* have two points: do linear interp between points 0, 1 */
	      for (i = 0; i < ydimension; i++)
		s0[i] = s1[i] = (yy[1][i] - yy[0][i])/(tt[1]-tt[0]);
	      do_bessel_range (tt[0], tt[1], yy[0], yy[1], s0, s1, 
			       first_t, last_t, spacing_t, 
			       ydimension, precision, true,
			       suppress_abscissa);
	      break;
	    case STATE_THREE:
	      /* already did 1st of 2 intervals, so do 2nd one too */

	      /* fit parabola through points 0,1,2 to compute slope at 2 */
	      for (i = 0; i < ydimension; i++)
		s2[i] = (((tt[0]-tt[2]) * ((yy[2][i]-yy[1][i]) / (tt[2]-tt[1]))
		       + (tt[2]-tt[1]) * ((yy[0][i]-yy[2][i]) / (tt[0]-tt[2])))
		      / (tt[0]-tt[1]));

	      /* output spline points in range between points 1, 2 */
	      do_bessel_range (tt[1], tt[2], yy[1], yy[2], s1, s2, 
			       first_t, last_t, spacing_t, 
			       ydimension, precision, true,
			       suppress_abscissa);
	      break;
	    }

	  /* free storage before return */
	  for (i = 0; i < 4; i++)
	    free (yy[i]);
	  free (stored);
	  free (yy);
	  free (s2);
	  free (s1);
	  free (s0);
	  free (y);

	  /* return indication of whether end-of-dataset was seen in stream */
	  return (success == 2 ? true : false);
	}
    }
}

void
#ifdef _HAVE_PROTOS
non_monotonic_error (void)
#else
non_monotonic_error ()
#endif
{
  fprintf (stderr, "%s: error: abscissa values not monotonic\n",
	   progname);
  exit (EXIT_FAILURE);
}


/* do_bessel_range() computes spline points separated by spacing_t, within
   the abscissa interval abscissa0 <= t < abscissa1, that happen to lie in
   the desired range first_t <= t <= last_t.  It writes them to standard
   output.  The ordinate values value0 and value1, and endpoint slopes
   slope0 and slope1, are specified.  If `endit' is set, then the intervals
   stretch slightly farther than abscissa1 and last_t, to compensate for
   roundoff error. */

void
#ifdef _HAVE_PROTOS
do_bessel_range (double abscissa0, double abscissa1, double *value0, 
		 double *value1, double *slope0, double *slope1, 
		 double first_t, double last_t, double spacing_t, 
		 int ydimension, int precision, bool endit,
		 bool suppress_abscissa)
#else
do_bessel_range (abscissa0, abscissa1, value0, value1, slope0, slope1,
		 first_t, last_t, spacing_t, ydimension, precision, 
		 endit, suppress_abscissa)
     double abscissa0, abscissa1, *value0, *value1, *slope0, *slope1;
     double first_t, last_t, spacing_t;
     int ydimension;
     int precision;
     bool endit;		/* last interval to be treated */
     bool suppress_abscissa;
#endif
{
  int direction = ((last_t > first_t) ? 1 : -1); /* sign of spacing_t */
  int i, j;
  int imin1 = (int)((abscissa0 - first_t) / spacing_t - 1);
  int imax1 = (int)((abscissa1 - first_t) / spacing_t + 1);
  int imin2 = 0;
  int imax2 = (int)((last_t - first_t) / spacing_t + 1);
  int imin, imax;
  
  /* compute maximum interval over which i must range */
  imin = IMAX (imin1, imin2);
  imax = IMIN (imax1, imax2);
  for (i = imin; i <= imax; i++)
    {
      double t;

      t = first_t + i * spacing_t;

      if ((direction * t >= direction * abscissa0)
	  && (direction * t >= direction * first_t)
	  /* stretch slightly if `endit' is set */
	  && ((direction * t < (direction 
				* (abscissa1 
				   + (endit ? 
				      FUZZ * (abscissa1 - abscissa0) : 0.)))))
	  && (direction * t <= (direction
			       * (last_t
				  + (endit ? FUZZ * (last_t - first_t) : 0.)))))
	{
	  double diff = t - abscissa0;
	  double updiff = abscissa1 - t;
	  double h = abscissa1 - abscissa0;
	  double *y;
	  bool success;

	  y = (double *)xmalloc (sizeof(double) * ydimension); 
	  for (j = 0; j < ydimension; j++)
	    {
	      /* should use a nested form */
	      y[j] = (value1[j] * (-2.0 * diff * diff * diff / (h * h * h)
				   + 3.0 * diff * diff / (h * h))
		+ value0[j] * (-2.0 * updiff * updiff * updiff / (h * h * h)
			           + 3.0 * updiff * updiff / (h * h)))
		+ ((slope1[j] * (diff * diff * diff / (h * h) 
			      - diff * diff / h)
		- (slope0[j] * (updiff * updiff * updiff / (h * h) 
				 - updiff * updiff / h))));
	    }
	  
	  success = write_point (t, y, 
				 ydimension, precision, suppress_abscissa);
	  if (!success)
	    {
	      fprintf (stderr, 
		       "%s: error: unable to write to standard output\n",
		       progname);
	      exit (EXIT_FAILURE);
	    }
	  free (y);
	}	  
    }
}


/* Output a separator between datasets.  For ascii-format output streams
   this is an extra newline (after the one that the spline ended with,
   yielding two newlines in succession).  For double-format output streams
   this is a DBL_MAX, etc. */

void
#ifdef _HAVE_PROTOS
output_dataset_separator (void)
#else
output_dataset_separator ()
#endif
{
  double ddummy;
  float fdummy;
  int idummy;

  switch (output_type)
    {
    case T_ASCII:
    default:
      printf ("\n");
      break;
    case T_DOUBLE:
      ddummy = DBL_MAX;
      fwrite ((voidptr_t) &ddummy, sizeof(ddummy), 1, stdout);
      break;
    case T_SINGLE:
      fdummy = FLT_MAX;
      fwrite ((voidptr_t) &fdummy, sizeof(fdummy), 1, stdout);
      break;
    case T_INTEGER:
      idummy = INT_MAX;
      fwrite ((voidptr_t) &idummy, sizeof(idummy), 1, stdout);
      break;
    }
}

/* skip_whitespace() skips whitespace in an ascii-format input file,
   up to but not including a second newline.  Return value indicates
   whether or not two newlines were in fact seen.  (For ascii-format
   input files, two newlines signals an end-of-dataset.) */

bool
#ifdef _HAVE_PROTOS
skip_whitespace (FILE *stream)
#else
skip_whitespace (stream)
     FILE *stream;
#endif
{
  int lookahead;
  int nlcount = 0;
  
  do 
    {
      lookahead = getc (stream);
      if (lookahead == (int)'\n')
	  nlcount++;
    }
  while (lookahead != EOF 
	 && isspace((unsigned char)lookahead)
	 && nlcount < 2);

  if (lookahead == EOF)
    return false;
  
  ungetc (lookahead, stream);
  return (nlcount == 2 ? true : false);
}

void
#ifdef _HAVE_PROTOS
maybe_emit_oob_warning (void)
#else
maybe_emit_oob_warning ()
#endif
{
  static bool warning_written = false;

  if (!warning_written)
    {
      fprintf (stderr, "%s: approximating one or more out-of-bounds output values\n", progname);
      warning_written = true;
    }
}


/* Following four functions compute (6/x^2)(1-x/sinh(x)),
   (3/x^2)(x/tanh(x)-1), (6/x^2)(1-x/sin(x)), and (3/x^2)(x/tan(x)-1) via
   the first three terms of the appropriate power series.  They are used
   when |x|<TRIG_ARG_MIN, to avoid loss of significance.  Errors are
   O(x**6). */
double
#ifdef _HAVE_PROTOS
sinh_func (double x) 
#else
sinh_func (x)
     double x;
#endif
{
  /* use 1-(7/60)x**2+(31/2520)x**4 */
  return 1.0 - (7.0/60.0)*x*x + (31.0/2520.0)*x*x*x*x;
}

double
#ifdef _HAVE_PROTOS
tanh_func (double x) 
#else
tanh_func (x)
     double x;
#endif
{
  /* use 1-(1/15)x**2+(2/315)x**4 */
  return 1.0 - (1.0/15.0)*x*x + (2.0/315.0)*x*x*x*x;
}

double
#ifdef _HAVE_PROTOS
sin_func (double x) 
#else
sin_func (x)
     double x;
#endif
{
  /* use -1-(7/60)x**2-(31/2520)x**4 */
  return -1.0 - (7.0/60.0)*x*x - (31.0/2520.0)*x*x*x*x;
}

double
#ifdef _HAVE_PROTOS
tan_func (double x) 
#else
tan_func (x)
     double x;
#endif
{
  /* use -1-(1/15)x**2-(2/315)x**4 */
  return -1.0 - (1.0/15.0)*x*x - (2.0/315.0)*x*x*x*x;
}


/* Following two functions compute (6/y^2)(sinh(xy)/sinh(y)-x) and
   (6/y^2)(sin(xy)/sin(y)-x), via the first three terms of the appropriate
   power series in y.  They are used when |y|<TRIG_ARG_MIN, to avoid loss
   of significance.  Errors are O(y**6). */
double
#ifdef _HAVE_PROTOS
quotient_sinh_func (double x, double y) 
#else
quotient_sinh_func (x, y)
     double x, y;
#endif
{
  return ((x*x*x-x) + (x*x*x*x*x/20.0 - x*x*x/6.0 + 7.0*x/60.0)*(y*y)
	  + (x*x*x*x*x*x*x/840.0 - x*x*x*x*x/120.0 + 7.0*x*x*x/360.0
	     -31.0*x/2520.0)*(y*y*y*y));
}

double
#ifdef _HAVE_PROTOS
quotient_sin_func (double x, double y) 
#else
quotient_sin_func (x, y)
     double x, y;
#endif
{
  return (- (x*x*x-x) + (x*x*x*x*x/20.0 - x*x*x/6.0 + 7.0*x/60.0)*(y*y)
	  - (x*x*x*x*x*x*x/840.0 - x*x*x*x*x/120.0 + 7.0*x*x*x/360.0
	     -31.0*x/2520.0)*(y*y*y*y));
}