1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/* This file contains functions that update the bounding box information
for a page whenever a new object (ellipse, line segment, or Bezier
segment) is plotted. Updating takes the line width into account, more
or less. The bounding box information is stored in terms of device
units, in the page's plOutbuf structure. */
#include "sys-defines.h"
#include "extern.h"
#define VLENGTH(v) sqrt( (v).x * (v).x + (v).y * (v).y )
/* update bounding box due to drawing of ellipse (args are in user coors) */
/* WARNING: This is not completely accurate, due to the nonzero width of
the pen used to draw the ellipse. Notoriously, the outer boundary of a
`wide ellipse' isn't an ellipse at all: in general it's an eighth-order
curve (see Foley and van Damm), though it's a fourth-order curve if the
axes are aligned with the coordinate axes. Here we approximate it as an
ellipse, with semimajor and semiminor axes in the user frame increased
by one-half of the line width. This approximation is good unless the
line width is large. */
void
#ifdef _HAVE_PROTOS
_set_ellipse_bbox (plOutbuf *bufp, double x, double y, double rx, double ry, double costheta, double sintheta, double linewidth, double m[6])
#else
_set_ellipse_bbox (bufp, x, y, rx, ry, costheta, sintheta, linewidth, m)
plOutbuf *bufp;
double x, y;
double rx, ry;
double costheta, sintheta;
double linewidth;
double m[6];
#endif
{
double ux, uy, vx, vy;
double mixing_angle;
double semi_axis_1_x, semi_axis_1_y, semi_axis_2_x, semi_axis_2_y;
double rx_device, ry_device;
double theta_device, costheta_device, sintheta_device;
double xdeviation, ydeviation;
/* take user-frame line width into account (approximately! see above) */
rx += 0.5 * linewidth;
ry += 0.5 * linewidth;
/* perform affine user->device coor transformation; (ux,uy) and (vx,vy)
are forward images of the semiaxes, i.e. they are conjugate radial
vectors in the device frame */
ux = XDV_INTERNAL(rx * costheta, rx * sintheta, m);
uy = YDV_INTERNAL(rx * costheta, rx * sintheta, m);
vx = XDV_INTERNAL(-ry * sintheta, ry * costheta, m);
vy = YDV_INTERNAL(-ry * sintheta, ry * costheta, m);
/* angle by which the conjugate radial vectors should be mixed, in order
to yield vectors along the major and minor axes in the device frame */
mixing_angle = 0.5 * _xatan2 (2.0 * (ux * vx + uy * vy),
ux * ux + uy * uy - vx * vx + vy * vy);
/* semi-axis vectors in device coordinates */
semi_axis_1_x = ux * cos(mixing_angle) + vx * sin(mixing_angle);
semi_axis_1_y = uy * cos(mixing_angle) + vy * sin(mixing_angle);
semi_axis_2_x = ux * cos(mixing_angle + M_PI_2)
+ vx * sin(mixing_angle + M_PI_2);
semi_axis_2_y = uy * cos(mixing_angle + M_PI_2)
+ vy * sin(mixing_angle + M_PI_2);
/* semi-axis lengths in device coordinates */
rx_device = sqrt (semi_axis_1_x * semi_axis_1_x
+ semi_axis_1_y * semi_axis_1_y);
ry_device = sqrt (semi_axis_2_x * semi_axis_2_x
+ semi_axis_2_y * semi_axis_2_y);
/* angle of inclination of the first semi-axis, in device frame */
theta_device = - _xatan2 (semi_axis_1_y, semi_axis_1_x);
costheta_device = cos (theta_device);
sintheta_device = sin (theta_device);
/* maximum displacement in horizontal and vertical directions
while drawing ellipse, in device frame */
xdeviation = sqrt (rx_device * rx_device * costheta_device * costheta_device
+ ry_device * ry_device * sintheta_device * sintheta_device);
ydeviation = sqrt (rx_device * rx_device * sintheta_device * sintheta_device
+ ry_device * ry_device * costheta_device * costheta_device);
/* record these displacements, for bounding box */
_update_bbox (bufp,
XD_INTERNAL(x,y,m) + xdeviation,
YD_INTERNAL(x,y,m) + ydeviation);
_update_bbox (bufp,
XD_INTERNAL(x,y,m) + xdeviation,
YD_INTERNAL(x,y,m) - ydeviation);
_update_bbox (bufp,
XD_INTERNAL(x,y,m) - xdeviation,
YD_INTERNAL(x,y,m) + ydeviation);
_update_bbox (bufp,
XD_INTERNAL(x,y,m) - xdeviation,
YD_INTERNAL(x,y,m) - ydeviation);
}
/* update bounding box due to drawing of a line end (args are in user coors) */
void
#ifdef _HAVE_PROTOS
_set_line_end_bbox (plOutbuf *bufp, double x, double y, double xother, double yother, double linewidth, int capstyle, double m[6])
#else
_set_line_end_bbox (bufp, x, y, xother, yother, linewidth, capstyle, m)
plOutbuf *bufp;
double x, y, xother, yother, linewidth;
int capstyle;
double m[6];
#endif
{
plVector v, vrot;
double xs, ys;
double halfwidth = 0.5 * linewidth;
switch (capstyle)
{
case CAP_BUTT:
default:
vrot.x = yother - y;
vrot.y = x - xother;
_vscale (&vrot, halfwidth);
xs = x + vrot.x;
ys = y + vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
xs = x - vrot.x;
ys = y - vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
break;
case CAP_PROJECT:
v.x = xother - x;
v.y = yother - y;
_vscale (&v, halfwidth);
vrot.x = yother - y;
vrot.y = x - xother;
_vscale (&vrot, halfwidth);
xs = x - v.x + vrot.x;
ys = y - v.y + vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
xs = x - v.x - vrot.x;
ys = y - v.y - vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
break;
case CAP_ROUND:
_set_ellipse_bbox (bufp, x, y, halfwidth, halfwidth, 1.0, 0.0, 0.0, m);
break;
case CAP_TRIANGULAR:
/* add projecting vertex */
v.x = xother - x;
v.y = yother - y;
_vscale (&v, halfwidth);
xs = x + v.x;
ys = y + v.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
/* add other two vertices */
vrot.x = yother - y;
vrot.y = x - xother;
_vscale (&vrot, halfwidth);
xs = x + vrot.x;
ys = y + vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
xs = x - vrot.x;
ys = y - vrot.y;
_update_bbox (bufp, XD_INTERNAL(xs,ys,m), YD_INTERNAL(xs,ys,m));
break;
}
}
/* update bounding box due to drawing of a line join (args are in user coors)*/
void
#ifdef _HAVE_PROTOS
_set_line_join_bbox (plOutbuf *bufp, double xleft, double yleft, double x, double y, double xright, double yright, double linewidth, int joinstyle, double miterlimit, double m[6])
#else
_set_line_join_bbox (bufp, xleft, yleft, x, y, xright, yright, linewidth, joinstyle, miterlimit, m)
plOutbuf *bufp;
double xleft, yleft, x, y, xright, yright, linewidth;
int joinstyle;
double miterlimit;
double m[6];
#endif
{
plVector v1, v2, vsum;
double v1len, v2len;
double halfwidth;
double mitrelen;
switch (joinstyle)
{
case JOIN_MITER:
default:
v1.x = xleft - x;
v1.y = yleft - y;
v2.x = xright - x;
v2.y = yright - y;
v1len = VLENGTH(v1);
v2len = VLENGTH(v2);
if (v1len == 0.0 || v2len == 0.0)
_update_bbox (bufp, XD_INTERNAL(x,y,m), YD_INTERNAL(x,y,m));
else
{
double cosphi;
/* The maximum value the cosine of the angle between two joining
lines may have, if the join is to be mitered rather than
beveled, is 1-2/(M*M), where M is the mitrelimit. This is
because M equals the cosecant of one-half the minimum angle. */
cosphi = ((v1.x * v2.x + v1.y * v2.y) / v1len) / v2len;
if (miterlimit <= 1.0
|| (cosphi > (1.0 - 2.0 / (miterlimit * miterlimit))))
/* bevel rather than miter */
{
_set_line_end_bbox (bufp, x, y, xleft, yleft, linewidth, CAP_BUTT, m);
_set_line_end_bbox (bufp,x, y, xright, yright, linewidth, CAP_BUTT, m);
}
else
{
mitrelen = sqrt (1.0 / (2.0 - 2.0 * cosphi)) * linewidth;
vsum.x = v1.x + v2.x;
vsum.y = v1.y + v2.y;
_vscale (&vsum, mitrelen);
x -= vsum.x;
y -= vsum.y;
_update_bbox (bufp, XD_INTERNAL(x,y,m), YD_INTERNAL(x,y,m));
}
}
break;
case JOIN_TRIANGULAR:
/* add a miter vertex, and same vertices as when bevelling */
vsum.x = v1.x + v2.x;
vsum.y = v1.y + v2.y;
_vscale (&vsum, 0.5 * linewidth);
x -= vsum.x;
y -= vsum.y;
_update_bbox (bufp, XD_INTERNAL(x,y,m), YD_INTERNAL(x,y,m));
/* fall through */
case JOIN_BEVEL:
_set_line_end_bbox (bufp, x, y, xleft, yleft, linewidth, CAP_BUTT, m);
_set_line_end_bbox (bufp, x, y, xright, yright, linewidth, CAP_BUTT, m);
break;
case JOIN_ROUND:
halfwidth = 0.5 * linewidth;
_set_ellipse_bbox (bufp, x, y, halfwidth, halfwidth, 1.0, 0.0, 0.0, m);
break;
}
}
/* Update bounding box due to drawing of a quadratic Bezier segment. This
takes into account only extremal x/y values in the interior of the
segment, i.e. it doesn't take the endpoints into account. */
/* WARNING: Like _set_ellipse_bbox above, this does not properly take line
width into account. The boundary of a `thick Bezier' is not a nice
curve at all. */
#define QUAD_COOR(t,x0,x1,x2) (((x0)-2*(x1)+(x2))*t*t + 2*((x1)-(x2))*t + (x2))
void
#ifdef _HAVE_PROTOS
_set_bezier2_bbox (plOutbuf *bufp, double x0, double y0, double x1, double y1, double x2, double y2, double device_line_width, double m[6])
#else
_set_bezier2_bbox (bufp, x0, y0, x1, y1, x2, y2, device_line_width, m)
plOutbuf *bufp;
double x0, y0, x1, y1, x2, y2;
double device_line_width;
double m[6];
#endif
{
double a_x, b_x, t_x;
double a_y, b_y, t_y;
double x, y, xdevice, ydevice;
double device_halfwidth = 0.5 * device_line_width;
/* compute coeffs of linear equation at+b=0, for both x and y coors */
a_x = x0 - 2 * x1 + x2;
b_x = (x1 - x2);
a_y = y0 - 2 * y1 + y2;
b_y = (y1 - y2);
if (a_x != 0.0) /* can solve the linear eqn. */
{
t_x = -b_x / a_x;
if (t_x > 0.0 && t_x < 1.0) /* root is in meaningful range */
{
x = QUAD_COOR(t_x, x0, x1, x2);
y = QUAD_COOR(t_x, y0, y1, y2);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice + device_halfwidth, ydevice);
_update_bbox (bufp, xdevice - device_halfwidth, ydevice);
}
}
if (a_y != 0.0) /* can solve the linear eqn. */
{
t_y = -b_y / a_y;
if (t_y > 0.0 && t_y < 1.0) /* root is in meaningful range */
{
x = QUAD_COOR(t_y, x0, x1, x2);
y = QUAD_COOR(t_y, y0, y1, y2);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice, ydevice + device_halfwidth);
_update_bbox (bufp, xdevice, ydevice - device_halfwidth);
}
}
}
/* Update bounding box due to drawing of a cubic Bezier segment. This
takes into account only extremal x/y values in the interior of the
segment, i.e. it doesn't take the endpoints into account. */
/* WARNING: Like _set_ellipse_bbox above, this does not properly take line
width into account. The boundary of a `thick Bezier' is not a nice
curve at all. */
#define CUBIC_COOR(t,x0,x1,x2,x3) (((x0)-3*(x1)+3*(x2)-(x3))*t*t*t + 3*((x1)-2*(x2)+(x3))*t*t + 3*((x2)-(x3))*t + (x3))
void
#ifdef _HAVE_PROTOS
_set_bezier3_bbox (plOutbuf *bufp, double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3, double device_line_width, double m[6])
#else
_set_bezier3_bbox (bufp, x0, y0, x1, y1, x2, y2, x3, y3, device_line_width, m)
plOutbuf *bufp;
double x0, y0, x1, y1, x2, y2, x3, y3;
double device_line_width;
double m[6];
#endif
{
double a_x, b_x, c_x, s_x, t_x;
double a_y, b_y, c_y, s_y, t_y;
double x, y, xdevice, ydevice;
double device_halfwidth = 0.5 * device_line_width;
double sqrt_disc;
/* compute coeffs of quad. equation at^2+bt+c=0, for both x and y coors */
a_x = x0 - 3 * x1 + 3 * x2 - x3;
b_x = 2 * (x1 - 2 * x2 + x3);
c_x = x2 - x3;
a_y = y0 - 3 * y1 + 3 * y2 - y3;
b_y = 2 * (y1 - 2 * y2 + y3);
c_y = y2 - y3;
if (a_x != 0.0) /* can solve the quadratic */
{
sqrt_disc = sqrt (b_x * b_x - 4 * a_x * c_x);
s_x = (- b_x + sqrt_disc) / (2 * a_x);
t_x = (- b_x - sqrt_disc) / (2 * a_x);
if (s_x > 0.0 && s_x < 1.0) /* root is in meaningful range */
{
x = CUBIC_COOR(s_x, x0, x1, x2, x3);
y = CUBIC_COOR(s_x, y0, y1, y2, y3);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice + device_halfwidth, ydevice);
_update_bbox (bufp, xdevice - device_halfwidth, ydevice);
}
if (t_x > 0.0 && t_x < 1.0) /* root is in meaningful range */
{
x = CUBIC_COOR(t_x, x0, x1, x2, x3);
y = CUBIC_COOR(t_x, y0, y1, y2, y3);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice + device_halfwidth, ydevice);
_update_bbox (bufp, xdevice - device_halfwidth, ydevice);
}
}
if (a_y != 0.0) /* can solve the quadratic */
{
sqrt_disc = sqrt (b_y * b_y - 4 * a_y * c_y);
s_y = (- b_y + sqrt_disc) / (2 * a_y);
t_y = (- b_y - sqrt_disc) / (2 * a_y);
if (s_y > 0.0 && s_y < 1.0) /* root is in meaningful range */
{
x = CUBIC_COOR(s_y, x0, x1, x2, x3);
y = CUBIC_COOR(s_y, y0, y1, y2, y3);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice, ydevice + device_halfwidth);
_update_bbox (bufp, xdevice, ydevice - device_halfwidth);
}
if (t_y > 0.0 && t_y < 1.0) /* root is in meaningful range */
{
x = CUBIC_COOR(t_y, x0, x1, x2, x3);
y = CUBIC_COOR(t_y, y0, y1, y2, y3);
xdevice = XD_INTERNAL(x,y,m);
ydevice = YD_INTERNAL(x,y,m);
_update_bbox (bufp, xdevice, ydevice + device_halfwidth);
_update_bbox (bufp, xdevice, ydevice - device_halfwidth);
}
}
}
|