1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include "sys-defines.h"
#include "extern.h"
#include "xmi.h"
#include "mi_spans.h"
#include "mi_api.h"
#include "mi_fply.h"
/* forward references */
static int GetFPolyYBounds ____P((const SppPoint *pts, int n, double yFtrans, int *by, int *ty));
/*
* Written by Todd Newman; April 1987.
* Hacked by Robert S. Maier, 1998-1999.
*
* Fill a convex polygon, with SPP (subpixel placement) of vertices. If
* the given polygon is not convex, then the result is undefined. All
* painting goes through the low-level MI_PAINT_SPANS() macro.
*
* In libxmi, this is used to draw polygonal line caps and line joins for
* poly-arcs. See mi_arc.c.
*
* The algorithm is to order the edges from smallest y to largest y, by
* partitioning the array into a left edge list and a right edge list. The
* algorithm used to traverse each edge is the digital differencing
* analyzer line algorithm, with y as the major axis. There's some funny
* linear interpolation involved because of the subpixel postioning. */
void
#ifdef _HAVE_PROTOS
miFillSppPoly (miPaintedSet *paintedSet, miPixel pixel, int count, const SppPoint *ptsIn, int xTrans, int yTrans, double xFtrans, double yFtrans)
#else
miFillSppPoly (paintedSet, pixel, count, ptsIn, xTrans, yTrans, xFtrans, yFtrans)
miPaintedSet *paintedSet;
miPixel pixel;
int count;
const SppPoint *ptsIn;
int xTrans, yTrans;
double xFtrans, yFtrans;
#endif
/* count = # points, ptsIn = points, ?Trans = translation for
each point, ?Ftrans = translation before conversion. This last
provides a mechanism to match rounding errors with any shape that
meets the polygon exactly. */
{
double xl = 0.0, /* x vals of left and right edges */
xr = 0.0,
ml = 0.0, /* left edge slope */
mr = 0.0, /* right edge slope */
dy, /* delta y */
i; /* loop counter */
int y, /* current scanline */
j,
imin, /* index of vertex with smallest y */
ymin, /* y-extents of polygon */
ymax;
int left, right, /* indices to first endpoints */
nextleft,
nextright; /* indices to second endpoints */
int *Marked; /* set if this vertex has been used */
unsigned int *width,
*FirstWidth; /* output buffer */
miPoint *ptsOut,
*FirstPoint; /* output buffer */
imin = GetFPolyYBounds (ptsIn, count, yFtrans, &ymin, &ymax);
y = ymax - ymin + 1;
if ((count < 3) || (y <= 0))
return;
ptsOut = FirstPoint = (miPoint *)mi_xmalloc(sizeof(miPoint) * y);
width = FirstWidth = (unsigned int *)mi_xmalloc(sizeof(unsigned int) * y);
Marked = (int *) mi_xmalloc(sizeof(int) * count);
for (j = 0; j < count; j++)
Marked[j] = 0;
nextleft = nextright = imin;
Marked[imin] = -1;
y = ICEIL(ptsIn[nextleft].y + yFtrans);
/*
* loop through all edges of the polygon
*/
do
{
/* add a left edge if we need to */
if ((y > (ptsIn[nextleft].y + yFtrans) ||
ISEQUAL(y, ptsIn[nextleft].y + yFtrans))
&& Marked[nextleft] != 1)
{
Marked[nextleft]++;
left = nextleft++;
/* find the next edge, considering the end conditions */
if (nextleft >= count)
nextleft = 0;
/* now compute the starting point and slope */
dy = ptsIn[nextleft].y - ptsIn[left].y;
if (dy != 0.0)
{
ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy;
dy = y - (ptsIn[left].y + yFtrans);
xl = (ptsIn[left].x + xFtrans) + ml * DMAX(dy, 0);
}
}
/* add a right edge if we need to */
if ((y > ptsIn[nextright].y + yFtrans)
||
(ISEQUAL(y, ptsIn[nextright].y + yFtrans)
&& Marked[nextright] != 1))
{
Marked[nextright]++;
right = nextright--;
/* find the next edge, considering the end conditions */
if (nextright < 0)
nextright = count - 1;
/* now compute the starting point and slope */
dy = ptsIn[nextright].y - ptsIn[right].y;
if (dy != 0.0)
{
mr = (ptsIn[nextright].x - ptsIn[right].x) / dy;
dy = y - (ptsIn[right].y + yFtrans);
xr = (ptsIn[right].x + xFtrans) + mr * DMAX(dy, 0);
}
}
/*
* generate scans to fill while we still have
* a right edge as well as a left edge.
*/
i = (DMIN(ptsIn[nextleft].y, ptsIn[nextright].y) + yFtrans) - y;
if (i < EPSILON)
{
if(Marked[nextleft] && Marked[nextright])
{
/* Arrgh, we're trapped! (no more points)
* Out, we've got to get out of here before this decadence saps
* our will completely! */
break;
}
continue;
}
else
{
j = (int) i;
if (!j)
j++;
}
while (j > 0)
{
int cxl, cxr;
ptsOut->y = (y) + yTrans;
cxl = ICEIL(xl);
cxr = ICEIL(xr);
/* reverse the edges if necessary */
if (xl < xr)
{
*(width++) = (unsigned int)(cxr - cxl);
(ptsOut++)->x = cxl + xTrans;
}
else
{
*(width++) = (unsigned int)(cxl - cxr);
(ptsOut++)->x = cxr + xTrans;
}
y++;
/* increment down the edges */
xl += ml;
xr += mr;
j--;
}
} while (y <= ymax);
free (Marked);
/* paint the spans (to miPaintedSet, or if NULL, to the canvas) */
MI_PAINT_SPANS(paintedSet, pixel, ptsOut - FirstPoint, FirstPoint, FirstWidth)
}
/* Find the index of the point with the smallest y. Also return the
smallest and largest y. */
static int
#ifdef _HAVE_PROTOS
GetFPolyYBounds (const SppPoint *pts, int n, double yFtrans, int *by, int *ty)
#else
GetFPolyYBounds (pts, n, yFtrans, by, ty)
const SppPoint *pts;
int n;
double yFtrans;
int *by, *ty;
#endif
{
const SppPoint *ptsStart = pts;
const SppPoint *ptMin;
double ymin, ymax;
ptMin = pts;
ymin = ymax = (pts++)->y;
while (--n > 0)
{
if (pts->y < ymin)
{
ptMin = pts;
ymin = pts->y;
}
if(pts->y > ymax)
ymax = pts->y;
pts++;
}
*by = ICEIL(ymin + yFtrans);
*ty = ICEIL(ymax + yFtrans - 1);
return (ptMin - ptsStart);
}
|