File: mi_fplycon.c

package info (click to toggle)
plotutils 2.4.1-15
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 11,072 kB
  • ctags: 6,952
  • sloc: ansic: 76,305; cpp: 12,402; sh: 8,475; yacc: 2,604; makefile: 894; lex: 144
file content (224 lines) | stat: -rw-r--r-- 5,985 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include "sys-defines.h"
#include "extern.h"

#include "xmi.h"
#include "mi_spans.h"
#include "mi_api.h"
#include "mi_fply.h"

/* forward references */
static int GetFPolyYBounds ____P((const SppPoint *pts, int n, double yFtrans, int *by, int *ty));

/*
 * Written by Todd Newman; April 1987.
 * Hacked by Robert S. Maier, 1998-1999.
 *
 * Fill a convex polygon, with SPP (subpixel placement) of vertices.  If
 * the given polygon is not convex, then the result is undefined.  All
 * painting goes through the low-level MI_PAINT_SPANS() macro.
 *
 * In libxmi, this is used to draw polygonal line caps and line joins for
 * poly-arcs.  See mi_arc.c.
 *
 * The algorithm is to order the edges from smallest y to largest y, by
 * partitioning the array into a left edge list and a right edge list.  The
 * algorithm used to traverse each edge is the digital differencing
 * analyzer line algorithm, with y as the major axis. There's some funny
 * linear interpolation involved because of the subpixel postioning. */

void
#ifdef _HAVE_PROTOS
miFillSppPoly (miPaintedSet *paintedSet, miPixel pixel, int count, const SppPoint *ptsIn, int xTrans, int yTrans, double xFtrans, double yFtrans)
#else
miFillSppPoly (paintedSet, pixel, count, ptsIn, xTrans, yTrans, xFtrans, yFtrans)
     miPaintedSet *paintedSet;
     miPixel pixel;
     int count;
     const SppPoint *ptsIn;
     int xTrans, yTrans;
     double xFtrans, yFtrans;
#endif
     /* count = # points, ptsIn = points, ?Trans = translation for
	each point, ?Ftrans = translation before conversion.  This last 
	provides a mechanism to match rounding errors with any shape that
	meets the polygon exactly. */
{
  double	xl = 0.0,	/* x vals of left and right edges */
  		xr = 0.0,
  		ml = 0.0,	/* left edge slope */
		mr = 0.0,	/* right edge slope */
		dy,		/* delta y */
		i;		/* loop counter */
  int		y,		/* current scanline */
		j,
		imin,		/* index of vertex with smallest y */
		ymin,		/* y-extents of polygon */
		ymax;
  int           left, right,	/* indices to first endpoints */
		nextleft,
		nextright;	/* indices to second endpoints */
  int		*Marked;	/* set if this vertex has been used */
  unsigned int	*width,
		*FirstWidth;	/* output buffer */
  miPoint	*ptsOut,
		*FirstPoint;	/* output buffer */

  imin = GetFPolyYBounds (ptsIn, count, yFtrans, &ymin, &ymax);

  y = ymax - ymin + 1;
  if ((count < 3) || (y <= 0))
    return;
  ptsOut = FirstPoint = (miPoint *)mi_xmalloc(sizeof(miPoint) * y);
  width = FirstWidth = (unsigned int *)mi_xmalloc(sizeof(unsigned int) * y);
  Marked = (int *) mi_xmalloc(sizeof(int) * count);

  for (j = 0; j < count; j++)
    Marked[j] = 0;
  nextleft = nextright = imin;
  Marked[imin] = -1;
  y = ICEIL(ptsIn[nextleft].y + yFtrans);

  /*
   *  loop through all edges of the polygon
   */
  do
    {
      /* add a left edge if we need to */
      if ((y > (ptsIn[nextleft].y + yFtrans) ||
	   ISEQUAL(y, ptsIn[nextleft].y + yFtrans)) 
	  && Marked[nextleft] != 1)
	{
	  Marked[nextleft]++;
	  left = nextleft++;

	  /* find the next edge, considering the end conditions */
	  if (nextleft >= count)
	    nextleft = 0;

	  /* now compute the starting point and slope */
	  dy = ptsIn[nextleft].y - ptsIn[left].y;
	  if (dy != 0.0)
	    { 
	      ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy;
	      dy = y - (ptsIn[left].y + yFtrans);
	      xl = (ptsIn[left].x + xFtrans) + ml * DMAX(dy, 0);
	    }
        }

      /* add a right edge if we need to */
      if ((y > ptsIn[nextright].y + yFtrans) 
	  ||
	  (ISEQUAL(y, ptsIn[nextright].y + yFtrans)
	   && Marked[nextright] != 1))
	{
	  Marked[nextright]++;
	  right = nextright--;
	    
	  /* find the next edge, considering the end conditions */
	  if (nextright < 0)
	    nextright = count - 1;
	    
	  /* now compute the starting point and slope */
	  dy = ptsIn[nextright].y - ptsIn[right].y;
	  if (dy != 0.0) 
	    { 
	      mr = (ptsIn[nextright].x - ptsIn[right].x) / dy;
	      dy = y - (ptsIn[right].y + yFtrans); 
	      xr = (ptsIn[right].x + xFtrans) + mr * DMAX(dy, 0);
	    }
	}
	
      /*
       *  generate scans to fill while we still have
       *  a right edge as well as a left edge.
       */
      i = (DMIN(ptsIn[nextleft].y, ptsIn[nextright].y) + yFtrans) - y;

      if (i < EPSILON)
	{
	  if(Marked[nextleft] && Marked[nextright])
	    {
	      /* Arrgh, we're trapped! (no more points) 
	       * Out, we've got to get out of here before this decadence saps
	       * our will completely! */
	      break;
	    }
	  continue;
	}
      else
	{
	  j = (int) i;
	  if (!j)
	    j++;
	}
      while (j > 0) 
        {
	  int cxl, cxr;

	  ptsOut->y = (y) + yTrans;

	  cxl = ICEIL(xl);
	  cxr = ICEIL(xr);
	  /* reverse the edges if necessary */
	  if (xl < xr) 
            {
	      *(width++) = (unsigned int)(cxr - cxl);
	      (ptsOut++)->x = cxl + xTrans;
            }
	  else 
            {
	      *(width++) = (unsigned int)(cxl - cxr);
	      (ptsOut++)->x = cxr + xTrans;
            }
	  y++;

	  /* increment down the edges */
	  xl += ml;
	  xr += mr;
	  j--;
        }
    } while (y <= ymax);

  free (Marked);

  /* paint the spans (to miPaintedSet, or if NULL, to the canvas) */
  MI_PAINT_SPANS(paintedSet, pixel, ptsOut - FirstPoint, FirstPoint, FirstWidth)
}

/* Find the index of the point with the smallest y.  Also return the
   smallest and largest y. */
static int
#ifdef _HAVE_PROTOS
GetFPolyYBounds (const SppPoint *pts, int n, double yFtrans, int *by, int *ty)
#else
GetFPolyYBounds (pts, n, yFtrans, by, ty)
     const SppPoint *pts;
     int n;
     double yFtrans;
     int *by, *ty;
#endif
{
  const SppPoint *ptsStart = pts;
  const SppPoint *ptMin;
  double ymin, ymax;

  ptMin = pts;
  ymin = ymax = (pts++)->y;

  while (--n > 0) 
    {
      if (pts->y < ymin)
	{
	  ptMin = pts;
	  ymin = pts->y;
	}
      if(pts->y > ymax)
	ymax = pts->y;

      pts++;
    }

  *by = ICEIL(ymin + yFtrans);
  *ty = ICEIL(ymax + yFtrans - 1);
  return (ptMin - ptsStart);
}