1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#include "sys-defines.h"
#include "extern.h"
#include "xmi.h"
#include "mi_spans.h"
#include "mi_gc.h"
#include "mi_api.h"
#include "mi_scanfill.h"
/* forward references */
static int getPolyYBounds ____P((const miPoint *pts, int n, int *by, int *ty));
/*
* Written by Brian Kelleher; Dec. 1985.
* Hacked by Robert S. Maier, 1998-99.
*
* Fill a convex polygon (if the polygon is not convex then the result is
* undefined). The algorithm is to order the edges from smallest y to
* largest y, by partitioning the array into a left edge list and a right
* edge list. The algorithm used to traverse each edge is an extension of
* Bresenham's midpoint line algorithm, with y as the major axis.
*
* All painting goes through the low-level MI_PAINT_SPANS() macro.
*
* See mi_plygen.c for miFillGeneralPoly(), a slower routine that can fill
* general polygons (i.e. polygons that may be non-convex or
* self-intersecting). */
void
#ifdef _HAVE_PROTOS
miFillConvexPoly (miPaintedSet *paintedSet, const miGC *pGC, int count, const miPoint *ptsIn)
#else
miFillConvexPoly (paintedSet, pGC, count, ptsIn)
miPaintedSet *paintedSet;
const miGC *pGC; /* unused */
int count;
const miPoint *ptsIn;
#endif
/* count = num of points, ptsIn = the points */
{
int xl = 0, xr = 0; /* x vals of left and right edges */
int dl = 0, dr = 0; /* decision variables */
int ml = 0, m1l = 0; /* left edge slope and slope+1 */
int mr = 0, m1r = 0; /* right edge slope and slope+1 */
int incr1l = 0, incr2l = 0; /* left edge error increments */
int incr1r = 0, incr2r = 0; /* right edge error increments */
int dy; /* delta y */
int y; /* current scanline */
int left, right; /* indices to first endpoints */
int i; /* loop counter */
int nextleft, nextright; /* indices to second endpoints */
miPoint *ptsOut, *FirstPoint; /* output buffer */
unsigned int *width, *FirstWidth; /* output buffer */
int imin; /* index of smallest vertex (in y) */
int ymin; /* y-extents of polygon */
int ymax;
/*
* find leftx, bottomy, rightx, topy, and the index
* of bottomy. Also translate the points.
*/
imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);
dy = ymax - ymin + 1;
if ((count < 3) || (dy < 0))
return;
ptsOut = FirstPoint = (miPoint *)mi_xmalloc(sizeof(miPoint) * dy);
width = FirstWidth = (unsigned int *)mi_xmalloc(sizeof(unsigned int) * dy);
nextleft = nextright = imin;
y = ptsIn[nextleft].y;
/*
* loop through all edges of the polygon
*/
do {
/*
* add a left edge if we need to
*/
if (ptsIn[nextleft].y == y)
{
left = nextleft;
/*
* find the next edge, considering the end
* conditions of the array.
*/
nextleft++;
if (nextleft >= count)
nextleft = 0;
/*
* now compute all of the random information
* needed to run the iterative algorithm.
*/
BRESINITPGON(ptsIn[nextleft].y-ptsIn[left].y,
ptsIn[left].x,ptsIn[nextleft].x,
xl, dl, ml, m1l, incr1l, incr2l);
}
/*
* add a right edge if we need to
*/
if (ptsIn[nextright].y == y)
{
right = nextright;
/*
* find the next edge, considering the end
* conditions of the array.
*/
nextright--;
if (nextright < 0)
nextright = count-1;
/*
* now compute all of the random information
* needed to run the iterative algorithm.
*/
BRESINITPGON(ptsIn[nextright].y-ptsIn[right].y,
ptsIn[right].x,ptsIn[nextright].x,
xr, dr, mr, m1r, incr1r, incr2r);
}
/*
* generate scans to fill while we still have
* a right edge as well as a left edge.
*/
i = IMIN(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
/* in case we're called with non-convex polygon */
if(i < 0)
{
free (FirstWidth);
free (FirstPoint);
return;
}
while (i-- > 0)
{
ptsOut->y = y;
/*
* reverse the edges if necessary
*/
if (xl < xr)
{
*(width++) = (unsigned int)(xr - xl);
(ptsOut++)->x = xl;
}
else
{
*(width++) = (unsigned int)(xl - xr);
(ptsOut++)->x = xr;
}
y++;
/* increment down the edges */
BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
}
} while (y != ymax);
/*
* Finally, paint the <remaining> spans
*/
MI_PAINT_SPANS(paintedSet, pGC->pixels[1], ptsOut - FirstPoint, FirstPoint, FirstWidth)
}
/*
* Find the index of the point with the smallest y.
*/
static int
#ifdef _HAVE_PROTOS
getPolyYBounds (const miPoint *pts, int n, int *by, int *ty)
#else
getPolyYBounds (pts, n, by, ty)
const miPoint *pts;
int n;
int *by, *ty;
#endif
{
const miPoint *ptsStart = pts;
const miPoint *ptMin;
int ymin, ymax;
ptMin = pts;
ymin = ymax = (pts++)->y;
while (--n > 0)
{
if (pts->y < ymin)
{
ptMin = pts;
ymin = pts->y;
}
if(pts->y > ymax)
ymax = pts->y;
pts++;
}
*by = ymin;
*ty = ymax;
return (ptMin - ptsStart);
}
|