File: mi_plycon.c

package info (click to toggle)
plotutils 2.4.1-15
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 11,072 kB
  • ctags: 6,952
  • sloc: ansic: 76,305; cpp: 12,402; sh: 8,475; yacc: 2,604; makefile: 894; lex: 144
file content (205 lines) | stat: -rw-r--r-- 5,169 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include "sys-defines.h"
#include "extern.h"

#include "xmi.h"
#include "mi_spans.h"
#include "mi_gc.h"
#include "mi_api.h"
#include "mi_scanfill.h"

/* forward references */
static int getPolyYBounds ____P((const miPoint *pts, int n, int *by, int *ty));

/*
 * Written by Brian Kelleher; Dec. 1985.
 * Hacked by Robert S. Maier, 1998-99.
 *
 * Fill a convex polygon (if the polygon is not convex then the result is
 * undefined).  The algorithm is to order the edges from smallest y to
 * largest y, by partitioning the array into a left edge list and a right
 * edge list.  The algorithm used to traverse each edge is an extension of
 * Bresenham's midpoint line algorithm, with y as the major axis.
 *
 * All painting goes through the low-level MI_PAINT_SPANS() macro.
 *
 * See mi_plygen.c for miFillGeneralPoly(), a slower routine that can fill
 * general polygons (i.e. polygons that may be non-convex or
 * self-intersecting).  */

void
#ifdef _HAVE_PROTOS
miFillConvexPoly (miPaintedSet *paintedSet, const miGC *pGC, int count, const miPoint *ptsIn)
#else
miFillConvexPoly (paintedSet, pGC, count, ptsIn)
     miPaintedSet *paintedSet;
     const miGC *pGC;		/* unused */
     int count;
     const miPoint *ptsIn;
#endif
/* count = num of points, ptsIn = the points */
{
  int xl = 0, xr = 0;		/* x vals of left and right edges */
  int dl = 0, dr = 0;		/* decision variables             */
  int ml = 0, m1l = 0;		/* left edge slope and slope+1    */
  int mr = 0, m1r = 0;		/* right edge slope and slope+1   */
  int incr1l = 0, incr2l = 0;	/* left edge error increments     */
  int incr1r = 0, incr2r = 0;	/* right edge error increments    */
  int dy;			/* delta y                        */
  int y;			/* current scanline               */
  int left, right;		/* indices to first endpoints     */
  int i;			/* loop counter                   */
  int nextleft, nextright;	/* indices to second endpoints    */
  miPoint *ptsOut, *FirstPoint; /* output buffer                  */
  unsigned int *width, *FirstWidth; /* output buffer                  */
  int imin;			/* index of smallest vertex (in y) */
  int ymin;			/* y-extents of polygon            */
  int ymax;
  
  /*
   *  find leftx, bottomy, rightx, topy, and the index
   *  of bottomy. Also translate the points.
   */
  imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);
  
  dy = ymax - ymin + 1;
  if ((count < 3) || (dy < 0))
    return;
  ptsOut = FirstPoint = (miPoint *)mi_xmalloc(sizeof(miPoint) * dy);
  width = FirstWidth = (unsigned int *)mi_xmalloc(sizeof(unsigned int) * dy);
  
  nextleft = nextright = imin;
  y = ptsIn[nextleft].y;
  
  /*
   *  loop through all edges of the polygon
   */
  do {
    /*
     *  add a left edge if we need to
     */
    if (ptsIn[nextleft].y == y) 
      {
	left = nextleft;

	/*
	 *  find the next edge, considering the end
	 *  conditions of the array.
	 */
	nextleft++;
	if (nextleft >= count)
	  nextleft = 0;

	/*
	 *  now compute all of the random information
	 *  needed to run the iterative algorithm.
	 */
	BRESINITPGON(ptsIn[nextleft].y-ptsIn[left].y,
		     ptsIn[left].x,ptsIn[nextleft].x,
		     xl, dl, ml, m1l, incr1l, incr2l);
      }
    
    /*
     *  add a right edge if we need to
     */
    if (ptsIn[nextright].y == y) 
      {
	right = nextright;

	/*
	 *  find the next edge, considering the end
	 *  conditions of the array.
	 */
	nextright--;
	if (nextright < 0)
	  nextright = count-1;

	/*
	 *  now compute all of the random information
	 *  needed to run the iterative algorithm.
	 */
	BRESINITPGON(ptsIn[nextright].y-ptsIn[right].y,
		     ptsIn[right].x,ptsIn[nextright].x,
		     xr, dr, mr, m1r, incr1r, incr2r);
      }
    
    /*
     *  generate scans to fill while we still have
     *  a right edge as well as a left edge.
     */
    i = IMIN(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
    /* in case we're called with non-convex polygon */
    if(i < 0)
      {
	free (FirstWidth);
	free (FirstPoint);
	return;
      }

    while (i-- > 0) 
      {
	ptsOut->y = y;

	/*
	 *  reverse the edges if necessary
	 */
	if (xl < xr) 
	  {
	    *(width++) = (unsigned int)(xr - xl);
	    (ptsOut++)->x = xl;
	  }
	else 
	  {
	    *(width++) = (unsigned int)(xl - xr);
	    (ptsOut++)->x = xr;
	  }
	y++;

	/* increment down the edges */
	BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
	BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
      }
  }  while (y != ymax);
  
  /*
   * Finally, paint the <remaining> spans
   */
  MI_PAINT_SPANS(paintedSet, pGC->pixels[1], ptsOut - FirstPoint, FirstPoint, FirstWidth)
}

/*
 *     Find the index of the point with the smallest y.
 */
static int
#ifdef _HAVE_PROTOS
getPolyYBounds (const miPoint *pts, int n, int *by, int *ty)
#else
getPolyYBounds (pts, n, by, ty)
     const miPoint *pts;
     int n;
     int *by, *ty;
#endif
{
  const miPoint *ptsStart = pts;
  const miPoint *ptMin;
  int ymin, ymax;

  ptMin = pts;
  ymin = ymax = (pts++)->y;

  while (--n > 0) 
    {
      if (pts->y < ymin)
	{
	  ptMin = pts;
	  ymin = pts->y;
        }
      if(pts->y > ymax)
	ymax = pts->y;

      pts++;
    }

  *by = ymin;
  *ty = ymax;
  return (ptMin - ptsStart);
}