1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
/* Special function approximations by Jos van der Woude <jvdwoude@hut.nl>,
Copyright (c) 1992 by Jos van der Woude. Permission granted to
distribute freely for non-commercial purposes only.
Extracted from the file specfun.c in the gnuplot 3.5 distribution.
This file contains the functions
ibeta, igamma, inverf, invnorm, norm
and versions of erf, erfc, lgamma for machines without them. */
#include "sys-defines.h"
#include "ode.h"
#include "extern.h"
#include <errno.h>
#define ITMAX 100
#ifdef FLT_EPSILON
#define MACHEPS FLT_EPSILON /* 1.0E-08 */
#else
#define MACHEPS 1.0E-08
#endif
#ifdef FLT_MIN_EXP
#define MINEXP FLT_MIN_EXP /* -88.0 */
#else
#define MINEXP -88.0
#endif
#ifdef FLT_MAX
#define OFLOW FLT_MAX /* 1.0E+37 */
#else
#define OFLOW 1.0E+37
#endif
#ifdef FLT_MAX_10_EXP
#define XBIG FLT_MAX_10_EXP /* 2.55E+305 */
#else
#define XBIG 2.55E+305
#endif
#ifndef HUGE_VAL
#ifdef HUGE
#define HUGE_VAL HUGE
#else
#ifdef INF
#define HUGE_VAL INF
#else
#define HUGE_VAL OFLOW
#endif
#endif
#endif
/*
* Mathematical constants
*/
#ifdef M_PI
#undef M_PI
#endif
#define M_PI 3.14159265358979323846
#ifdef M_SQRT2
#undef M_SQRT2
#endif
#define M_SQRT2 1.41421356237309504880168872420969809 /* JG */
#define M_LNPI 1.14472988584940016
#define M_LNSQRT2PI 0.9189385332046727
/* Forward references */
/* The following gamma-related nonsense is necessary because (1) some
vendors have lgamma(), some have gamma(), and some have neither [see
include/sys-defines.h for further comments], (2) some vendors do not
declare whichever function they have [e.g. Irix 5.3 requires an
auxiliary preprocessing symbol to be defined for the declaration in
math.h to be visible], and (3) some vendors supply broken versions which
we can't use [e.g. AIX's libm.a gamma support is conspicuously broken],
so we need to link in a replacement, but we can't use the same name for
the external symbol `signgam'. What a mess! -- rsm */
#ifdef NO_SYSTEM_GAMMA
#define SIGNGAM our_signgam
static int SIGNGAM;
double f_lgamma ____P((double x));
static double lgamneg ____P((double x));
static double lgampos ____P((double x));
#else /* not NO_SYSTEM_GAMMA, we link in vendor code */
#define SIGNGAM signgam
extern int SIGNGAM;
#endif
double f_gamma ____P((double x));
#ifndef HAVE_ERF
double erf ____P((double x));
double erfc ____P((double x));
#endif
double ibeta ____P((double a, double b, double x));
double igamma ____P((double a, double x));
double inverf ____P((double p));
double invnorm ____P((double p));
double norm ____P((double x));
static double confrac ____P((double a, double b, double x));
/* Our gamma function. F_LGAMMA(), which this calls, computes the log of
the gamma function, with the sign being returned in SIGNGAM. F_LGAMMA()
is defined in include/sys-defines.h. It may be a vendor-supplied
lgamma(), a vendor-supplied gamma(), or our own f_lgamma (see below). */
double
#ifdef _HAVE_PROTOS
f_gamma (double x)
#else
f_gamma (x)
double x;
#endif
{
#ifdef HAVE_MATHERR
struct exception exc;
#endif
double y = F_LGAMMA(x);
if (y > 88.0)
{
#ifdef HAVE_MATHERR
exc.name = (char *)"lgamma";
exc.arg1 = x;
exc.retval = HUGE_VAL;
exc.type = OVERFLOW;
if (!matherr (&exc))
{
fprintf (stderr, "lgamma: OVERFLOW error\n");
errno = ERANGE;
}
return exc.retval;
#else
errno = ERANGE;
return HUGE_VAL;
#endif
}
else
return SIGNGAM * exp(y);
}
#ifdef NO_SYSTEM_GAMMA
/**
* from statlib, Thu Jan 23 15:02:27 EST 1992 ***
*
* This file contains two algorithms for the logarithm of the gamma
* function. Algorithm AS 245 is the faster (but longer) and gives an
* accuracy of about 10-12 significant decimal digits except for small
* regions around z = 1 and z = 2, where the function goes to zero.
*
* The second algorithm (used below) is not part of the AS algorithms.
* It is slower but gives 14 or more significant decimal digits accuracy,
* except around z = 1 and z = 2. The Lanczos series from which this
* algorithm is derived is interesting in that it is a convergent series
* approximation for the gamma function, whereas the familiar series due to
* De Moivre (and usually wrongly called Stirling's approximation) is only
* an asymptotic approximation, as is the true and preferable approximation
* due to Stirling.
* Uses Lanczos-type approximation to log(gamma(z)) for z > 0.
*
* Reference: C. Lanczos, `A precision approximation of the
* gamma function', SIAM J. Numer. Anal., B, 1, 86-96, 1964.
* Accuracy: about 14 significant digits except for small regions in
* the vicinity of 1 and 2.
*
* Programmer: Alan Miller, CSIRO Division of Mathematics & Statistics
*
* Latest revision: 17 April 1988
*
* Additions: Translated from Fortran to C, code added to handle values z < 0.
* The global variable SIGNGAM contains the sign of the gamma function.
*
* IMPORTANT: The SIGNGAM variable contains garbage until AFTER the call to
* lgamma().
*
* Permission granted to distribute freely for non-commercial purposes only
* Copyright (c) 1992 Jos van der Woude <jvdwoude@hut.nl>
*/
/* high-precision values from Ray Toy <toy@rtp.ericsson.se> */
static const double a[] =
{
.99999999999980993227684700473478296744476168282198,
676.52036812188509856700919044401903816411251975244084,
-1259.13921672240287047156078755282840836424300664868028,
771.32342877765307884865282588943070775227268469602500,
-176.61502916214059906584551353999392943274507608117860,
12.50734327868690481445893685327104972970563021816420,
-.13857109526572011689554706984971501358032683492780,
.00000998436957801957085956266828104544089848531228,
.00000015056327351493115583383579667028994545044040,
};
static double
#ifdef _HAVE_PROTOS
lgamneg (double z)
#else
lgamneg (z)
double z;
#endif
{
double tmp, result;
#ifdef HAVE_MATHERR
struct exception exc;
#endif
if (!modf (z = -z, &tmp))
/* SING if z is negative integer */
{
#ifdef HAVE_MATHERR
exc.name = "lgamma";
exc.arg1 = -z;
exc.retval = HUGE_VAL;
exc.type = SING;
if (!matherr (&exc))
{
fprintf (stderr, "lgamma: SING error\n");
errno = EDOM;
}
return (exc.retval);
#else
errno = EDOM;
return HUGE_VAL;
#endif /* HAVE_MATHERR */
}
/* Use reflection formula, then call lgampos() */
tmp = sin(z * M_PI);
if (tmp < 0.0)
{
tmp = -tmp;
SIGNGAM = -1;
}
result = M_LNPI - lgampos(1.0 - z) - log(tmp);
if (fabs (result) == HUGE_VAL)
{
#ifdef HAVE_MATHERR
exc.name = "gamma";
exc.arg1 = z;
exc.retval = HUGE_VAL;
exc.type = OVERFLOW;
if (!matherr(&exc))
errno = ERANGE;
return (exc.retval);
#else
errno = ERANGE;
return HUGE_VAL;
#endif
}
return result;
}
static double
#ifdef _HAVE_PROTOS
lgampos (double z)
#else
lgampos (z)
double z;
#endif
{
double sum;
double tmp;
double result;
int i;
#ifdef HAVE_MATHERR
struct exception exc;
#endif
sum = a[0];
for (i = 1, tmp = z; i < 9; i++)
{
sum += a[i] / tmp;
tmp++;
}
result = log(sum) + M_LNSQRT2PI - z - 6.5 + (z - 0.5) * log(z + 6.5);
if (result == HUGE_VAL)
{
#ifdef HAVE_MATHERR
exc.name = "lgamma";
exc.arg1 = z;
exc.retval = HUGE_VAL;
exc.type = OVERFLOW;
if (!matherr (&exc))
{
fprintf (stderr, "lgamma: OVERFLOW error\n");
errno = ERANGE;
}
return exc.retval;
#else
errno = ERANGE;
return HUGE_VAL;
#endif
}
return result;
}
/* Our log-of-gamma function, which we use if the vendor doesn't supply
one, or if the vendor's version is buggy. */
double
#ifdef _HAVE_PROTOS
f_lgamma (double z)
#else
f_lgamma (z)
double z;
#endif
{
SIGNGAM = 1;
if (z <= 0.0)
return lgamneg(z);
else
return lgampos(z);
}
#endif /* NO_SYSTEM_GAMMA */
#ifndef HAVE_ERF
double
#ifdef _HAVE_PROTOS
erf (double x)
#else
erf (x)
double x;
#endif
{
x = x < 0.0 ? -igamma(0.5, x * x) : igamma(0.5, x * x);
return x;
}
double
#ifdef _HAVE_PROTOS
erfc (double x)
#else
erfc (x)
double x;
#endif
{
x = x < 0.0 ? 1.0 + igamma(0.5, x * x) : 1.0 - igamma(0.5, x * x);
return x;
}
#endif /* not HAVE_ERF */
/** ibeta.c
*
* DESCRIB Approximate the incomplete beta function Ix(a, b).
*
*
* gamma(a + b) /x (a-1) (b-1)
* Ix(a, b) = ------------------- * | t * (1 - t) dt (a,b > 0)
* gamma(a) * gamma(b) /0
*
*
*
* CALL p = ibeta(a, b, x)
*
* double a > 0
* double b > 0
* double x [0, 1]
*
* WARNING none
*
* RETURN double p [0, 1]
* -1.0 on error condition
*
* XREF lgamma()
*
* BUGS none
*
* REFERENCE The continued fraction expansion as given by
* Abramowitz and Stegun (1964) is used.
*
* Permission granted to distribute freely for non-commercial purposes only
* Copyright (c) 1992 Jos van der Woude <jvdwoude@hut.nl>
*/
double
#ifdef _HAVE_PROTOS
ibeta (double a, double b, double x)
#else
ibeta (a, b, x)
double a, b, x;
#endif
{
/* Test for admissibility of arguments */
if (a <= 0.0 || b <= 0.0 || x < 0.0 || x > 1.0)
return -1.0; /* DOMAIN error */
/* If x equals 0 or 1, return x as prob */
if (x == 0.0 || x == 1.0)
return x;
/* Swap a, b if necessarry for more efficient evaluation */
return a < x * (a + b) ? 1.0 - confrac(b, a, 1.0 - x) : confrac(a, b, x);
}
static double
#ifdef _HAVE_PROTOS
confrac (double a, double b, double x)
#else
confrac (a, b, x)
double a, b, x;
#endif
{
double Alo = 0.0;
double Ahi;
double Aev;
double Aod;
double Blo = 1.0;
double Bhi = 1.0;
double Bod = 1.0;
double Bev = 1.0;
double f;
double fold;
double Apb = a + b;
double d;
int i;
int j;
/* Set up continued fraction expansion evaluation. */
Ahi = exp(F_LGAMMA(Apb) + a * log(x) + b * log(1.0 - x) -
F_LGAMMA(a + 1.0) - F_LGAMMA(b));
/*
* Continued fraction loop begins here. Evaluation continues until
* maximum iterations are exceeded, or convergence achieved.
*/
for (i = 0, j = 1, f = Ahi; i <= ITMAX; i++, j++)
{
d = a + j + i;
Aev = -(a + i) * (Apb + i) * x / d / (d - 1.0);
Aod = j * (b - j) * x / d / (d + 1.0);
Alo = Bev * Ahi + Aev * Alo;
Blo = Bev * Bhi + Aev * Blo;
Ahi = Bod * Alo + Aod * Ahi;
Bhi = Bod * Blo + Aod * Bhi;
if (fabs (Bhi) < MACHEPS)
Bhi = 0.0;
if (Bhi != 0.0)
{
fold = f;
f = Ahi / Bhi;
if (fabs(f - fold) < fabs(f) * MACHEPS)
return f;
}
}
return -1.0;
}
/* igamma.c
*
* DESCRIB Approximate the incomplete gamma function P(a, x).
*
* 1 /x -t (a-1)
* P(a, x) = -------- * | e * t dt (a > 0)
* gamma(a) /0
*
* CALL p = igamma(a, x)
*
* double a > 0
* double x >= 0
*
* WARNING none
*
* RETURN double p [0, 1]
* -1.0 on error condition
*
* XREF lgamma()
*
* BUGS Values 0 <= x <= 1 may lead to inaccurate results.
*
* REFERENCE ALGORITHM AS239 APPL. STATIST. (1988) VOL. 37, NO. 3
*
* Permission granted to distribute freely for non-commercial purposes only
* Copyright (c) 1992 Jos van der Woude <jvdwoude@hut.nl>
*/
double
#ifdef _HAVE_PROTOS
igamma (double a, double x)
#else
igamma (a, x)
double a, x;
#endif
{
double arg;
double aa;
double an;
double b;
double pn1, pn2, pn3, pn4, pn5, pn6;
int i;
/* Check that we have valid values for a and x */
if (x < 0.0 || a <= 0.0)
return -1.0; /* DOMAIN error */
/* Deal with special cases */
if (x == 0.0)
return 0.0; /* SING error */
if (x > XBIG)
return 1.0; /* loss of significance? */
/* Check value of factor arg */
arg = a * log(x) - x - F_LGAMMA(a + 1.0);
if (arg < MINEXP)
return -1.0;
arg = exp(arg);
/* Choose infinite series or continued fraction. */
if ((x > 1.0) && (x >= a + 2.0))
/* Use a continued fraction expansion */
{
double rn, rnold;
aa = 1.0 - a;
b = aa + x + 1.0;
pn1 = 1.0;
pn2 = x;
pn3 = x + 1.0;
pn4 = x * b;
rnold = pn3 / pn4;
for (i = 1; i <= ITMAX; i++)
{
aa++;
b += 2.0;
an = aa * (double) i;
pn5 = b * pn3 - an * pn1;
pn6 = b * pn4 - an * pn2;
if (pn6 != 0.0)
{
rn = pn5 / pn6;
if (fabs(rnold - rn) <= DMIN(MACHEPS, MACHEPS * rn))
return 1.0 - arg * rn * a;
rnold = rn;
}
pn1 = pn3;
pn2 = pn4;
pn3 = pn5;
pn4 = pn6;
if (fabs(pn5) >= OFLOW)
/* re-scale terms in continued fraction since terms are large */
{
pn1 /= OFLOW;
pn2 /= OFLOW;
pn3 /= OFLOW;
pn4 /= OFLOW;
}
}
}
else /* x < max (1, a+2) */
{
/* Use Pearson's series expansion. */
for (i = 0, aa = a, an = b = 1.0; i <= ITMAX; i++)
{
aa++;
an *= x / aa;
b += an;
if (an < b * MACHEPS)
return arg * b;
}
}
return -1.0;
}
/* ----------------------------------------------------------------
Following additions to specfun.c made by John Grosh <jgrosh@arl.mil>
on 28 OCT 1992.
---------------------------------------------------------------- */
double
#ifdef _HAVE_PROTOS
norm (double x) /* Normal or Gaussian Probability Function */
#else
norm (x) /* Normal or Gaussian Probability Function */
double x;
#endif
{
/* Ref.: Abramowitz and Stegun 1964, "Handbook of Mathematical
Functions", Applied Mathematics Series, vol. 55, Chapter 26, page 934,
Eqn. 26.2.29 and Jos van der Woude code found above */
#ifndef ERF
x = 0.5 * M_SQRT2 * x;
x = 0.5 * (1.0 + (x < 0.0 ? -igamma(0.5, x * x) : igamma(0.5, x * x)));
#else
x = 0.5 * (1.0 + erf(0.5 * M_SQRT2 * x));
#endif
return x;
}
double
#ifdef _HAVE_PROTOS
invnorm (double p) /* Inverse Normal Probability Function */
#else
invnorm (p) /* Inverse Normal Probability Function */
double p;
#endif
{
/* Source: This routine was derived (using f2c) from the Fortran
* subroutine MDNRIS found in ACM Algorithm 602, obtained from netlib.
*
* MDNRIS code is copyright 1978 by IMSL, Inc. Since MDNRIS has been
* submitted to netlib it may be used with the restrictions that it may
* only be used for noncommercial purposes, and that IMSL be acknowledged
* as the copyright-holder of the code.
*/
/* Initialized data */
static double eps = 1e-10;
static double g0 = 1.851159e-4;
static double g1 = -.002028152;
static double g2 = -.1498384;
static double g3 = .01078639;
static double h0 = .09952975;
static double h1 = .5211733;
static double h2 = -.06888301;
/* Local variables */
static double a, w, x;
static double sd, wi, sn, y;
/* Note: 0.0 < p < 1.0 */
if (p <= eps)
/* p too small, compute y directly */
{
a = p + p;
w = sqrt(-(double)log(a + (a - a * a)));
/* use a rational function in 1.0 / w */
wi = 1.0 / w;
sn = ((g3 * wi + g2) * wi + g1) * wi;
sd = ((wi + h2) * wi + h1) * wi + h0;
y = w + w * (g0 + sn / sd);
y = - y * M_SQRT2;
}
else
{
x = 1.0 - (p + p);
y = inverf(x);
y = - M_SQRT2 * y;
}
return y;
}
double
#ifdef _HAVE_PROTOS
inverf (double p) /* Inverse Error Function */
#else
inverf (p) /* Inverse Error Function */
double p;
#endif
{
/*
* Source: This routine was derived (using f2c) from the Fortran
* subroutine MERFI found in ACM Algorithm 602, obtained from netlib.
*
* MDNRIS code is copyright 1978 by IMSL, Inc. Since MERFI has been
* submitted to netlib, it may be used with the restrictions that it may
* only be used for noncommercial purposes, and that IMSL be acknowledged
* as the copyright-holder of the code.
*/
/* Initialized data */
static double a1 = -.5751703;
static double a2 = -1.896513;
static double a3 = -.05496261;
static double b0 = -.113773;
static double b1 = -3.293474;
static double b2 = -2.374996;
static double b3 = -1.187515;
static double c0 = -.1146666;
static double c1 = -.1314774;
static double c2 = -.2368201;
static double c3 = .05073975;
static double d0 = -44.27977;
static double d1 = 21.98546;
static double d2 = -7.586103;
static double e0 = -.05668422;
static double e1 = .3937021;
static double e2 = -.3166501;
static double e3 = .06208963;
static double f0 = -6.266786;
static double f1 = 4.666263;
static double f2 = -2.962883;
static double g0 = 1.851159e-4;
static double g1 = -.002028152;
static double g2 = -.1498384;
static double g3 = .01078639;
static double h0 = .09952975;
static double h1 = .5211733;
static double h2 = -.06888301;
/* Local variables */
static double a, b, f, w, x, y, z, sigma, z2, sd, wi, sn;
x = p;
/* determine sign of x */
sigma = (x > 0 ? 1.0 : -1.0);
/* Note: -1.0 < x < 1.0 */
z = fabs(x);
/* z between 0.0 and 0.85, approx. f by a
rational function in z */
if (z <= 0.85)
{
z2 = z * z;
f = z + z * (b0 + a1 * z2 / (b1 + z2 + a2
/ (b2 + z2 + a3 / (b3 + z2))));
}
else /* z greater than 0.85 */
{
a = 1.0 - z;
b = z;
/* reduced argument is in (0.85,1.0), obtain the transformed variable */
w = sqrt(-(double)log(a + a * b));
if (w >= 4.0)
/* w greater than 4.0, approx. f by a rational function in 1.0 / w */
{
wi = 1.0 / w;
sn = ((g3 * wi + g2) * wi + g1) * wi;
sd = ((wi + h2) * wi + h1) * wi + h0;
f = w + w * (g0 + sn / sd);
}
else if (w < 4.0 && w > 2.5)
/* w between 2.5 and 4.0, approx. f by a rational function in w */
{
sn = ((e3 * w + e2) * w + e1) * w;
sd = ((w + f2) * w + f1) * w + f0;
f = w + w * (e0 + sn / sd);
/* w between 1.13222 and 2.5, approx. f by
a rational function in w */
}
else if (w <= 2.5 && w > 1.13222)
{
sn = ((c3 * w + c2) * w + c1) * w;
sd = ((w + d2) * w + d1) * w + d0;
f = w + w * (c0 + sn / sd);
}
}
y = sigma * f;
return y;
}
|