1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
|
/* This file is part of the GNU plotutils package. Copyright (C) 1995,
1996, 1997, 1998, 1999, 2000, 2005, 2008, Free Software Foundation, Inc.
The GNU plotutils package is free software. You may redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software foundation; either version 2, or (at your
option) any later version.
The GNU plotutils package is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with the GNU plotutils package; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin St., Fifth Floor,
Boston, MA 02110-1301, USA. */
/* This file contains all of libplot's low-level code for constructing and
manipulating paths, both simple and compound. It includes functions
that construct polygonal and Bezier approximations to a given path.
They are used by Plotters whose output format does not support all of
libplot's graphics primitives. */
/* E.g., _fakearc() draws polygonal approximations to circular and elliptic
quarter-arcs. Each polygonal approximation will contain
2**NUM_ARC_SUBDIVISIONS line segments.
Similarly, polygonal approximations to quadratic and cubic Beziers will
contain no more than 2**MAX_NUM_BEZIER2_SUBDIVISIONS and
2**MAX_NUM_BEZIER3_SUBDIVISIONS line segments. However, each bisection
algorithm used for drawing a Bezier normally usually its recursion based
on a relative flatness criterion (see below). */
#include "sys-defines.h"
#include "extern.h"
#include "g_arc.h" /* for chord table */
/* Number of times a circular arc or quarter-ellipse will be recursively
subdivided. Two raised to this power is the number of line segments
that the polygonalization will contain. */
/* NOTE: the maximum allowed value for NUM_ARC_SUBDIVISIONS is
TABULATED_ARC_SUBDIVISIONS (i.e., the size of the chordal deviation
table for a quarter-circle or quarter-ellipse, defined in g_arc.h). */
#define NUM_ARC_SUBDIVISIONS 5
/* Maximum number of times quadratic and cubic Beziers will be recursively
subdivided. For Beziers we use an adaptive algorithm, in which
bisection stops when a specified relative flatness has been reached.
But these parameters provide a hard cutoff, which overrides the relative
flatness end condition. */
#define MAX_NUM_BEZIER2_SUBDIVISIONS 6
#define MAX_NUM_BEZIER3_SUBDIVISIONS 7
/* The relative flatness parameters. */
#define REL_QUAD_FLATNESS 5e-4
#define REL_CUBIC_FLATNESS 5e-4
#define DATAPOINTS_BUFSIZ PL_MAX_UNFILLED_PATH_LENGTH
#define DIST(p0,p1) (sqrt( ((p0).x - (p1).x)*((p0).x - (p1).x) \
+ ((p0).y - (p1).y)*((p0).y - (p1).y)))
#define MIDWAY(x0, x1) (0.5 * ((x0) + (x1)))
/* forward references */
static void _prepare_chord_table (double sagitta, double custom_chord_table[TABULATED_ARC_SUBDIVISIONS]);
static void _fakearc (plPath *path, plPoint p0, plPoint p1, int arc_type, const double *custom_chord_table, const double m[4]);
/* ctor for plPath class; constructs an empty plPath, with type set to
PATH_SEGMENT_LIST (default type) */
plPath *
_new_plPath (void)
{
plPath *path;
path = (plPath *)_pl_xmalloc (sizeof (plPath));
path->type = PATH_SEGMENT_LIST;
path->segments = (plPathSegment *)NULL;
path->segments_len = 0; /* number of slots allocated */
path->num_segments = 0; /* number of slots occupied */
path->primitive = false;
path->llx = DBL_MAX;
path->lly = DBL_MAX;
path->urx = -(DBL_MAX);
path->ury = -(DBL_MAX);
return path;
}
/* dtor for plPath class */
void
_delete_plPath (plPath *path)
{
if (path == (plPath *)NULL)
return;
if (path->type == PATH_SEGMENT_LIST
&& path->segments_len > 0) /* number of slots allocated */
free (path->segments);
free (path);
}
/* reset function for plPath class */
void
_reset_plPath (plPath *path)
{
if (path == (plPath *)NULL)
return;
if (path->type == PATH_SEGMENT_LIST
&& path->segments_len > 0) /* number of slots allocated */
free (path->segments);
path->segments = (plPathSegment *)NULL;
path->segments_len = 0;
path->type = PATH_SEGMENT_LIST; /* restore to default */
path->num_segments = 0;
path->primitive = false;
path->llx = DBL_MAX;
path->lly = DBL_MAX;
path->urx = -(DBL_MAX);
path->ury = -(DBL_MAX);
}
void
_add_moveto (plPath *path, plPoint p)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
/* empty, so allocate a segment buffer */
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
path->segments[0].type = S_MOVETO;
path->segments[0].p = p;
path->num_segments = 1;
path->llx = p.x;
path->lly = p.y;
path->urx = p.x;
path->ury = p.y;
}
void
_add_line (plPath *path, plPoint p)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0)
/* empty, so allocate a segment buffer */
{
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
}
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_LINE;
path->segments[path->num_segments].p = p;
path->num_segments++;
path->llx = DMIN(path->llx, p.x);
path->lly = DMIN(path->lly, p.y);
path->urx = DMAX(path->urx, p.x);
path->ury = DMAX(path->ury, p.y);
}
void
_add_closepath (plPath *path)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0) /* meaningless */
return;
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_CLOSEPATH;
path->segments[path->num_segments].p = path->segments[0].p;
path->num_segments++;
}
void
_add_bezier2 (plPath *path, plPoint pc, plPoint p)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0)
/* empty, so allocate a segment buffer */
{
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
}
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_QUAD;
path->segments[path->num_segments].p = p;
path->segments[path->num_segments].pc = pc;
path->num_segments++;
}
void
_add_bezier3 (plPath *path, plPoint pc, plPoint pd, plPoint p)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0)
/* empty, so allocate a segment buffer */
{
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
}
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_CUBIC;
path->segments[path->num_segments].p = p;
path->segments[path->num_segments].pc = pc;
path->segments[path->num_segments].pd = pd;
path->num_segments++;
}
void
_add_arc (plPath *path, plPoint pc, plPoint p1)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0)
/* empty, so allocate a segment buffer */
{
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
}
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_ARC;
path->segments[path->num_segments].p = p1;
path->segments[path->num_segments].pc = pc;
path->num_segments++;
}
void
_add_ellarc (plPath *path, plPoint pc, plPoint p1)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
if (path->num_segments == 0)
/* empty, so allocate a segment buffer */
{
path->segments = (plPathSegment *)
_pl_xmalloc (DATAPOINTS_BUFSIZ * sizeof(plPathSegment));
path->segments_len = DATAPOINTS_BUFSIZ;
}
if (path->num_segments == path->segments_len)
/* full, so reallocate */
{
path->segments = (plPathSegment *)
_pl_xrealloc (path->segments,
2 * path->segments_len * sizeof(plPathSegment));
path->segments_len *= 2;
}
path->segments[path->num_segments].type = S_ELLARC;
path->segments[path->num_segments].p = p1;
path->segments[path->num_segments].pc = pc;
path->num_segments++;
}
void
_add_box (plPath *path, plPoint p0, plPoint p1, bool clockwise)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
path->type = PATH_BOX;
path->p0 = p0;
path->p1 = p1;
path->clockwise = clockwise;
path->llx = DMIN(path->llx, p0.x);
path->lly = DMIN(path->lly, p0.y);
path->urx = DMAX(path->urx, p0.x);
path->ury = DMAX(path->ury, p0.y);
path->llx = DMIN(path->llx, p1.x);
path->lly = DMIN(path->lly, p1.y);
path->urx = DMAX(path->urx, p1.x);
path->ury = DMAX(path->ury, p1.y);
}
void
_add_circle (plPath *path, plPoint pc, double radius, bool clockwise)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
path->type = PATH_CIRCLE;
path->pc = pc;
path->radius = radius;
path->clockwise = clockwise;
}
void
_add_ellipse (plPath *path, plPoint pc, double rx, double ry, double angle, bool clockwise)
{
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
path->type = PATH_ELLIPSE;
path->pc = pc;
path->rx = rx;
path->ry = ry;
path->angle = angle;
path->clockwise = clockwise;
}
/* Draw a polygonal approximation to the circular arc from p0 to p1, with
center pc, by calling _fakearc(), which in turn repeatedly calls
_add_line(). It is assumed that p0 and p1 are distinct. It is assumed
that pc is on the perpendicular bisector of the line segment joining
them, and that the graphics cursor is initially located at p0. */
void
_add_arc_as_lines (plPath *path, plPoint pc, plPoint p1)
{
/* starting point */
plPoint p0;
/* bisection point of arc, and midpoint of chord */
plPoint pb, pm;
/* rotation matrix */
double m[4];
/* other variables */
plVector v, v0, v1;
double radius, sagitta;
double cross, orientation;
/* handcrafted relative chordal deviation table, for this arc */
double custom_chord_table[TABULATED_ARC_SUBDIVISIONS];
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
if (p0.x == p1.x && p0.y == p1.y)
/* zero-length arc, draw as zero-length line segment */
_add_line (path, p0);
else
/* genuine polygonal approximation */
{
/* vectors from pc to p0, and pc to p1 */
v0.x = p0.x - pc.x;
v0.y = p0.y - pc.y;
v1.x = p1.x - pc.x;
v1.y = p1.y - pc.y;
/* cross product, zero if points are collinear */
cross = v0.x * v1.y - v1.x * v0.y;
/* Compute orientation. Note libplot convention: if p0, p1, pc are
collinear then arc goes counterclockwise from p0 to p1. */
orientation = (cross >= 0.0 ? 1.0 : -1.0);
radius = DIST(pc, p0); /* radius is distance to p0 or p1 */
pm.x = 0.5 * (p0.x + p1.x); /* midpoint of chord from p0 to p1 */
pm.y = 0.5 * (p0.y + p1.y);
v.x = p1.x - p0.x; /* chord vector from p0 to p1 */
v.y = p1.y - p0.y;
_vscale(&v, radius);
pb.x = pc.x + orientation * v.y; /* bisection point of arc */
pb.y = pc.y - orientation * v.x;
sagitta = DIST(pb, pm) / radius;
/* fill in entries of chordal deviation table for this user-defined
sagitta */
_prepare_chord_table (sagitta, custom_chord_table);
/* call _fakearc(), using for `rotation' matrix m[] a clockwise or
counterclockwise rotation by 90 degrees, depending on orientation */
m[0] = 0.0, m[1] = orientation, m[2] = -orientation, m[3] = 0.0;
_fakearc (path, p0, p1, USER_DEFINED_ARC, custom_chord_table, m);
}
}
/* Draw a polygonal approximation to a quarter-ellipse from p0 to p1, by
calling _fakearc(), which in turn repeatedly calls _add_line(). pc is
the center of the arc, and p0, p1, pc are assumed not to be collinear.
It is assumed that the graphics cursor is located at p0 when this
function is called.
The control triangle for the elliptic arc will have vertices p0, p1, and
K = p0 + (p1 - pc) = p1 + (p0 - pc). The arc will pass through p0 and
p1, and will be tangent at p0 to the edge from p0 to K, and at p1 to the
edge from p1 to K. */
void
_add_ellarc_as_lines (plPath *path, plPoint pc, plPoint p1)
{
plPoint p0;
plVector v0, v1;
double cross;
double m[4];
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
/* vectors from pc to p0, and pc to p1 */
v0.x = p0.x - pc.x;
v0.y = p0.y - pc.y;
v1.x = p1.x - pc.x;
v1.y = p1.y - pc.y;
/* cross product */
cross = v0.x * v1.y - v1.x * v0.y;
if (FROUND(cross) == 0.0)
/* collinear points, draw line segment from p0 to p1
(not quite right, could be bettered) */
_add_line (path, p1);
else
{
/* `rotation' matrix (it maps v0 -> -v1 and v1 -> v0) */
m[0] = - (v0.x * v0.y + v1.x * v1.y) / cross;
m[1] = (v0.x * v0.x + v1.x * v1.x) / cross;
m[2] = - (v0.y * v0.y + v1.y * v1.y) / cross;
m[3] = (v0.x * v0.y + v1.x * v1.y) / cross;
/* draw polyline inscribed in the quarter-ellipse */
_fakearc (path, p0, p1, QUARTER_ARC, (double *)NULL, m);
}
}
/* A function that approximates a circular arc by a cubic Bezier. The
approximation used is a standard one. E.g., a quarter circle extending
from (1,0) to (0,1), with center (0,0), would be approximated by a cubic
Bezier with control points (1,KAPPA) and (KAPPA,1). Here KAPPA =
(4/3)[sqrt(2)-1] = 0.552284749825, approximately. The cubic Bezier will
touch the quarter-circle along the line x=y.
For a quarter-circle, the maximum relative error in r as a function of
theta is about 2.7e-4. The error in r has the same sign, for all theta. */
/* According to Berthold K. P. Horn <bkph@ai.mit.edu>, the general formula
for KAPPA, for a radius-1 circular arc (not necessary a quarter-circle),
KAPPA = (4/3)sqrt[(1-cos H)/(1+cos H)]
= (4/3)[1-cos H]/[sin H] = (4/3)[sin H]/[1+cosH]
where H is half the angle subtended by the arc. H=45 degrees for a
quarter circle. This is the formula we use. */
/* Louis Vosloo <support@yandy.com> points out that for a quarter-circle,
the value 0.55228... for KAPPA is, for some purposes, sub-optimal. By
dropping the requirement that the quarter-circle and the Bezier touch
each other along the symmetry line x=y, one can slightly decrease the
maximum relative error. He says 0.5541... is the best possible choice.
He doesn't have an improved value of KAPPA for a general arc, though. */
void
_add_arc_as_bezier3 (plPath *path, plPoint pc, plPoint p1)
{
plPoint p0;
plVector v0, v1;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
/* vectors to starting, ending points */
v0.x = p0.x - pc.x;
v0.y = p0.y - pc.y;
v1.x = p1.x - pc.x;
v1.y = p1.y - pc.y;
if ((v0.x == 0.0 && v0.y == 0.0) || (v1.x == 0.0 && v1.y == 0.0)
|| (v0.x == v1.x && v0.y == v1.y))
/* degenerate case */
_add_line (path, p1);
else
/* normal case */
{
double oldangle, newangle, anglerange;
double cross;
int orientation;
/* cross product, zero if points are collinear */
cross = v0.x * v1.y - v1.x * v0.y;
/* Compute orientation. Note libplot convention: if p0, p1, pc
are collinear then arc goes counterclockwise from p0 to p1. */
orientation = (cross >= 0.0 ? 1 : -1);
/* compute signed subtended angle */
oldangle = _xatan2 (v0.y, v0.x);
newangle = _xatan2 (v1.y, v1.x);
anglerange = newangle - oldangle;
if (anglerange > M_PI)
anglerange -= (2 * M_PI);
if (anglerange <= -(M_PI))
anglerange += (2 * M_PI);
if (FABS(anglerange) > 0.51 * M_PI)
/* subtended angle > 0.51 * pi, so split arc in two and recurse,
since Bezier approximation isn't very good for angles much
greater than 90 degrees */
{
double radius;
plPoint pb;
plVector v;
radius = DIST(pc, p0); /* radius is distance to p0 or p1 */
v.x = p1.x - p0.x; /* chord vector from p0 to p1 */
v.y = p1.y - p0.y;
_vscale(&v, radius);
pb.x = pc.x + orientation * v.y; /* bisection point of arc */
pb.y = pc.y - orientation * v.x;
_add_arc_as_bezier3 (path, pc, pb);
_add_arc_as_bezier3 (path, pc, p1);
}
else
/* subtended angle <= 0.51 * pi, so a single Bezier suffices */
{
double halfangle, sinhalf, coshalf, kappa;
plPoint pc_bezier3, pd_bezier3;
halfangle = 0.5 * FABS(anglerange);
sinhalf = sin (halfangle);
coshalf = cos (halfangle);
/* compute kappa using either of two formulae, depending on
numerical stability */
if (FABS(sinhalf) < 0.5)
kappa = (4.0/3.0) * sinhalf / (1.0 + coshalf);
else
kappa = (4.0/3.0) * (1.0 - coshalf) / sinhalf;
pc_bezier3.x = p0.x - kappa * orientation * v0.y;
pc_bezier3.y = p0.y + kappa * orientation * v0.x;
pd_bezier3.x = p1.x + kappa * orientation * v1.y;
pd_bezier3.y = p1.y - kappa * orientation * v1.x;
_add_bezier3 (path, pc_bezier3, pd_bezier3, p1);
}
}
}
#define KAPPA_FOR_QUARTER_CIRCLE 0.552284749825
void
_add_ellarc_as_bezier3 (plPath *path, plPoint pc, plPoint p1)
{
plPoint p0, pc_bezier3, pd_bezier3;
plVector v0, v1;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
/* vectors to starting, ending points */
v0.x = p0.x - pc.x;
v0.y = p0.y - pc.y;
v1.x = p1.x - pc.x;
v1.y = p1.y - pc.y;
/* replace by cubic Bezier, with computed control points */
pc_bezier3.x = p0.x + KAPPA_FOR_QUARTER_CIRCLE * v1.x;
pc_bezier3.y = p0.y + KAPPA_FOR_QUARTER_CIRCLE * v1.y;
pd_bezier3.x = p1.x + KAPPA_FOR_QUARTER_CIRCLE * v0.x;
pd_bezier3.y = p1.y + KAPPA_FOR_QUARTER_CIRCLE * v0.y;
_add_bezier3 (path, pc_bezier3, pd_bezier3, p1);
}
/* Approximate a quadratic Bezier by a polyline: standard deCasteljau
bisection algorithm. However, we stop subdividing when an appropriate
metric of the quadratic Bezier to be drawn is sufficiently small. If
(p0,p1,p2) defines the quadratic Bezier, we require that the length of
p0-2*p1+p2 be less than REL_QUAD_FLATNESS times the distance between the
endpoints of the original Bezier. */
void
_add_bezier2_as_lines (plPath *path, plPoint pc, plPoint p)
{
plPoint r0[MAX_NUM_BEZIER2_SUBDIVISIONS + 1], r1[MAX_NUM_BEZIER2_SUBDIVISIONS + 1], r2[MAX_NUM_BEZIER2_SUBDIVISIONS + 1];
int level[MAX_NUM_BEZIER2_SUBDIVISIONS + 1];
int n = 0; /* index of top of stack, < MAX_NUM_BEZIER2_SUBDIVISIONS */
int segments_drawn = 0;
plPoint p0;
double sqdist, max_squared_length;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
/* squared distance between p0 and p */
sqdist = (p.x - p0.x) * (p.x - p0.x) + (p.y - p0.y) * (p.y - p0.y);
max_squared_length = REL_QUAD_FLATNESS * REL_QUAD_FLATNESS * sqdist;
r0[0] = p0;
r1[0] = pc;
r2[0] = p;
level[0] = 0;
while (n >= 0) /* i.e. while stack is nonempty */
{
int current_level;
plPoint q0, q1, q2;
current_level = level[n];
q0 = r0[n];
q1 = r1[n];
q2 = r2[n];
if (current_level >= MAX_NUM_BEZIER2_SUBDIVISIONS)
/* to avoid stack overflow, draw as line segment */
{
_add_line (path, q2);
segments_drawn++;
n--;
}
else
/* maybe bisect the Bezier */
{
plPoint qq0, qq1;
plPoint qqq0;
plVector vec1;
vec1.x = q0.x - 2 * q1.x + q2.x;
vec1.y = q0.y - 2 * q1.y + q2.y;
if (vec1.x * vec1.x + vec1.y * vec1.y < max_squared_length)
/* very flat Bezier, so draw as line segment */
{
_add_line (path, q2);
segments_drawn++;
n--;
}
else
/* split Bezier into pair and recurse */
/* level[n] >= n is an invariant */
{
qq0.x = MIDWAY(q0.x, q1.x);
qq0.y = MIDWAY(q0.y, q1.y);
qq1.x = MIDWAY(q1.x, q2.x);
qq1.y = MIDWAY(q1.y, q2.y);
qqq0.x = MIDWAY(qq0.x, qq1.x);
qqq0.y = MIDWAY(qq0.y, qq1.y);
/* first half, deal with next */
r0[n+1] = q0;
r1[n+1] = qq0;
r2[n+1] = qqq0;
level[n+1] = current_level + 1;
/* second half, deal with later */
r0[n] = qqq0;
r1[n] = qq1;
r2[n] = q2;
level[n] = current_level + 1;
n++;
}
}
}
}
/* Approximate a cubic Bezier by a polyline: standard deCasteljau bisection
algorithm. However, we stop subdividing when an appropriate metric of
the cubic Bezier to be drawn is sufficiently small. If (p0,p1,p2,p3)
defines the cubic Bezier, we require that the lengths of p0-2*p1+p2 and
p1-2*p2+p3 be less than REL_CUBIC_FLATNESS times the distance between
the endpoints of the original Bezier. */
void
_add_bezier3_as_lines (plPath *path, plPoint pc, plPoint pd, plPoint p)
{
plPoint r0[MAX_NUM_BEZIER3_SUBDIVISIONS + 1], r1[MAX_NUM_BEZIER3_SUBDIVISIONS + 1], r2[MAX_NUM_BEZIER3_SUBDIVISIONS + 1], r3[MAX_NUM_BEZIER3_SUBDIVISIONS + 1];
int level[MAX_NUM_BEZIER3_SUBDIVISIONS + 1];
int n = 0; /* index of top of stack, < MAX_NUM_BEZIER3_SUBDIVISIONS */
int segments_drawn = 0;
plPoint p0;
double sqdist, max_squared_length;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments == 0)
return;
/* determine starting point */
p0 = path->segments[path->num_segments - 1].p;
/* squared distance between p0 and p */
sqdist = (p.x - p0.x) * (p.x - p0.x) + (p.y - p0.y) * (p.y - p0.y);
max_squared_length = REL_CUBIC_FLATNESS * REL_CUBIC_FLATNESS * sqdist;
r0[0] = p0;
r1[0] = pc;
r2[0] = pd;
r3[0] = p;
level[0] = 0;
while (n >= 0) /* i.e. while stack is nonempty */
{
int current_level;
plPoint q0, q1, q2, q3;
current_level = level[n];
q0 = r0[n];
q1 = r1[n];
q2 = r2[n];
q3 = r3[n];
if (current_level >= MAX_NUM_BEZIER3_SUBDIVISIONS)
/* draw line segment, to avoid stack overflow */
{
_add_line (path, q3);
segments_drawn++;
n--;
}
else
/* maybe bisect the Bezier */
{
plPoint qq0, qq1, qq2;
plPoint qqq0, qqq1;
plPoint qqqq0;
plVector vec1, vec2;
vec1.x = q0.x - 2 * q1.x + q2.x;
vec1.y = q0.y - 2 * q1.y + q2.y;
vec2.x = q1.x - 2 * q2.x + q3.x;
vec2.y = q1.y - 2 * q2.y + q3.y;
if (vec1.x * vec1.x + vec1.y * vec1.y < max_squared_length
&& vec2.x * vec2.x + vec2.y * vec2.y < max_squared_length)
/* very flat Bezier, so draw as line segment */
{
_add_line (path, q3);
segments_drawn++;
n--;
}
else
/* split Bezier into pair and recurse */
/* level[n] >= n is an invariant */
{
qq0.x = MIDWAY(q0.x, q1.x);
qq0.y = MIDWAY(q0.y, q1.y);
qq1.x = MIDWAY(q1.x, q2.x);
qq1.y = MIDWAY(q1.y, q2.y);
qq2.x = MIDWAY(q2.x, q3.x);
qq2.y = MIDWAY(q2.y, q3.y);
qqq0.x = MIDWAY(qq0.x, qq1.x);
qqq0.y = MIDWAY(qq0.y, qq1.y);
qqq1.x = MIDWAY(qq1.x, qq2.x);
qqq1.y = MIDWAY(qq1.y, qq2.y);
qqqq0.x = MIDWAY(qqq0.x, qqq1.x);
qqqq0.y = MIDWAY(qqq0.y, qqq1.y);
/* first half, deal with next */
level[n+1] = current_level + 1;
r0[n+1] = q0;
r1[n+1] = qq0;
r2[n+1] = qqq0;
r3[n+1] = qqqq0;
/* second half, deal with later */
level[n] = current_level + 1;
r0[n] = qqqq0;
r1[n] = qqq1;
r2[n] = qq2;
r3[n] = q3;
n++;
}
}
}
}
void
_add_box_as_lines (plPath *path, plPoint p0, plPoint p1, bool clockwise)
{
bool x_move_is_first;
plPoint newpoint;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
_add_moveto (path, p0);
/* if counterclockwise, would first pen motion be in x direction? */
x_move_is_first = ((p1.x >= p0.x && p1.y >= p0.y)
|| (p1.x < p0.x && p1.y < p0.y) ? true : false);
if (clockwise)
/* take complement */
x_move_is_first = (x_move_is_first == true ? false : true);
if (x_move_is_first)
{
newpoint.x = p1.x;
newpoint.y = p0.y;
}
else
{
newpoint.x = p0.x;
newpoint.y = p1.y;
}
_add_line (path, newpoint);
_add_line (path, p1);
if (x_move_is_first)
{
newpoint.x = p0.x;
newpoint.y = p1.y;
}
else
{
newpoint.x = p1.x;
newpoint.y = p0.y;
}
_add_line (path, newpoint);
_add_line (path, p0);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_ellipse_as_bezier3s (plPath *path, plPoint pc, double rx, double ry, double angle, bool clockwise)
{
plPoint startpoint, newpoint;
double theta, costheta, sintheta;
double xc, yc;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
/* draw ellipse by drawing four elliptic arcs */
theta = (M_PI / 180.0) * angle; /* convert to radians */
costheta = cos (theta);
sintheta = sin (theta);
xc = pc.x;
yc = pc.y;
startpoint.x = xc + rx * costheta;
startpoint.y = yc + rx * sintheta;
_add_moveto (path, startpoint);
if (clockwise)
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
else
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
_add_ellarc_as_bezier3 (path, pc, newpoint);
newpoint.x = xc - rx * costheta;
newpoint.y = yc - rx * sintheta;
_add_ellarc_as_bezier3 (path, pc, newpoint);
if (clockwise)
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
else
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
_add_ellarc_as_bezier3 (path, pc, newpoint);
_add_ellarc_as_bezier3 (path, pc, startpoint);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_ellipse_as_ellarcs (plPath *path, plPoint pc, double rx, double ry, double angle, bool clockwise)
{
plPoint startpoint, newpoint;
double theta, costheta, sintheta;
double xc, yc;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
/* draw ellipse by drawing four elliptic arcs */
theta = (M_PI / 180.0) * angle; /* convert to radians */
costheta = cos (theta);
sintheta = sin (theta);
xc = pc.x;
yc = pc.y;
startpoint.x = xc + rx * costheta;
startpoint.y = yc + rx * sintheta;
_add_moveto (path, startpoint);
if (clockwise)
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
else
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
_add_ellarc (path, pc, newpoint);
newpoint.x = xc - rx * costheta;
newpoint.y = yc - rx * sintheta;
_add_ellarc (path, pc, newpoint);
if (clockwise)
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
else
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
_add_ellarc (path, pc, newpoint);
_add_ellarc (path, pc, startpoint);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_ellipse_as_lines (plPath *path, plPoint pc, double rx, double ry, double angle, bool clockwise)
{
plPoint startpoint, newpoint;
double theta, costheta, sintheta;
double xc, yc;
if (path == (plPath *)NULL)
return;
if (path->type != PATH_SEGMENT_LIST || path->num_segments > 0)
return;
/* draw ellipse by drawing four fake elliptic arcs */
theta = (M_PI / 180.0) * angle; /* convert to radians */
costheta = cos (theta);
sintheta = sin (theta);
xc = pc.x;
yc = pc.y;
startpoint.x = xc + rx * costheta;
startpoint.y = yc + rx * sintheta;
_add_moveto (path, startpoint);
if (clockwise)
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
else
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
_add_ellarc_as_lines (path, pc, newpoint);
newpoint.x = xc - rx * costheta;
newpoint.y = yc - rx * sintheta;
_add_ellarc_as_lines (path, pc, newpoint);
if (clockwise)
{
newpoint.x = xc - ry * sintheta;
newpoint.y = yc + ry * costheta;
}
else
{
newpoint.x = xc + ry * sintheta;
newpoint.y = yc - ry * costheta;
}
_add_ellarc_as_lines (path, pc, newpoint);
_add_ellarc_as_lines (path, pc, startpoint);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_circle_as_bezier3s (plPath *path, plPoint pc, double radius, bool clockwise)
{
if (path == (plPath *)NULL)
return;
_add_ellipse_as_bezier3s (path, pc, radius, radius, 0.0, clockwise);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_circle_as_ellarcs (plPath *path, plPoint pc, double radius, bool clockwise)
{
if (path == (plPath *)NULL)
return;
_add_ellipse_as_ellarcs (path, pc, radius, radius, 0.0, clockwise);
path->primitive = true; /* flag as flattened primitive */
}
void
_add_circle_as_lines (plPath *path, plPoint pc, double radius, bool clockwise)
{
if (path == (plPath *)NULL)
return;
_add_ellipse_as_lines (path, pc, radius, radius, 0.0, clockwise);
path->primitive = true; /* flag as flattened primitive */
}
/* The _fakearc() subroutine below, which is called by _add_arc_as_lines()
and _add_ellarc_as_lines(), contains a remote descendent of the
arc-drawing algorithm of Ken Turkowski <turk@apple.com> described in
Graphics Gems V. His algorithm is a recursive circle subdivision
algorithm, which relies on the fact that if s and s' are the (chordal
deviation)/radius associated to (respectively) an arc and a half-arc,
then s' is approximately equal to s/4. The exact formula is s' = 1 -
sqrt (1 - s/2), which applies for all s in the meaningful range, i.e. 0
<= s <= 2.
Ken's algorithm rotates the chord of an arc by 90 degrees and scales it
to have length s'. The resulting vector will be the chordal deviation
vector of the arc, which gives the midpoint of the arc, and hence the
endpoints of each half of the arc. So this drawing technique is
recursive.
The problem with this approach is that scaling a vector to a specified
length requires a square root, so there are two square roots in each
subdivision step. One can attempt to remove one of them by noticing
that the chord half-length h always satisfies h = sqrt(s * (2-s))). So
one can rotate the chord vector by 90 degrees, and multiply its length
by s/2h, i.e., s/2sqrt(s * (2-s)), to get the chordal deviation vector.
This factor still includes a square root though. Also one still needs
to compute a square root in order to proceed from one subdivision step
to the next, i.e. to compute s' from s.
We can get around the square root problem by drawing only circular arcs
with subtended angle of 90 degrees (quarter-circles), or elliptic arcs
that are obtained from such quarter-circles by affine transformations
(so-called quarter-ellipses). To draw the latter, we need only replace
the 90 degree rotation matrix mentioned above by an affine
transformation that maps v0->-v1 and v1->v0, where v0 = p0 - pc and v1 =
p1 - pc are the displacement vectors from the center of the ellipse to
the endpoints of the arc. If we do this, we get an elliptic arc with p0
and p1 as endpoints. The vectors v0 and v1 are said lie along conjugate
diameters of the quarter-ellipse.
So for drawing quarter-ellipses, the only initial value of s we need to
consider is the one for a quarter-circle, which is 1-sqrt(1/2). The
successive values of s/2h that will be encountered, after each
bisection, are pre-computed and stored in a lookup table, found in
g_arc.h.
This approach lets us avoid, completely, any computation of square roots
during the drawing of quarter-circles and quarter-ellipses. The only
square roots we need are precomputed. We don't need any floating point
divisions in the main loop either.
Of course for other angles than 90 degrees, we precompute a chord table
and pass it to _fakearc().
The implementation below does not use recursion (we use a local array,
rather than the call stack, to store the sequence of generated
points). */
static void
_fakearc (plPath *path, plPoint p0, plPoint p1, int arc_type, const double *custom_chord_table, const double m[4])
{
plPoint p[NUM_ARC_SUBDIVISIONS + 1], q[NUM_ARC_SUBDIVISIONS + 1];
int level[NUM_ARC_SUBDIVISIONS + 1];
int n = 0; /* index of top of stack, < NUM_ARC_SUBDIVISIONS */
int segments_drawn = 0;
const double *our_chord_table;
if (arc_type == USER_DEFINED_ARC)
our_chord_table = custom_chord_table;
else /* custom_chord_table arg ignored */
our_chord_table = _chord_table[arc_type];
p[0] = p0;
q[0] = p1;
level[0] = 0;
while (n >= 0) /* i.e. while stack is nonempty */
{
if (level[n] >= NUM_ARC_SUBDIVISIONS)
{ /* draw line segment */
_add_line (path, q[n]);
segments_drawn++;
n--;
}
else /* bisect line segment */
{
plVector v;
plPoint pm, pb;
v.x = q[n].x - p[n].x; /* chord = line segment from p[n] to q[n] */
v.y = q[n].y - p[n].y;
pm.x = p[n].x + 0.5 * v.x; /* midpoint of chord */
pm.y = p[n].y + 0.5 * v.y;
/* Compute bisection point. If m=[0 1 -1 0] this just rotates
the chord clockwise by 90 degrees, and scales it to yield the
chordal deviation vector, which is used as an offset. */
pb.x = pm.x +
our_chord_table[level[n]] * (m[0] * v.x + m[1] * v.y);
pb.y = pm.y +
our_chord_table[level[n]] * (m[2] * v.x + m[3] * v.y);
/* replace line segment by pair; level[n] >= n is an invariant */
p[n+1] = p[n];
q[n+1] = pb; /* first half, deal with next */
level[n+1] = level[n] + 1;
p[n] = pb;
q[n] = q[n]; /* second half, deal with later */
level[n] = level[n] + 1;
n++;
}
}
}
/* prepare_chord_table() computes the list of chordal deviation factors
that _fakearc() needs when it is employed to draw a circular arc of
subtended angle other than the default angles it supports */
static void
_prepare_chord_table (double sagitta, double custom_chord_table[TABULATED_ARC_SUBDIVISIONS])
{
double half_chord_length;
int i;
half_chord_length = sqrt ( sagitta * (2.0 - sagitta) );
for (i = 0; i < TABULATED_ARC_SUBDIVISIONS; i++)
{
custom_chord_table[i] = 0.5 * sagitta / half_chord_length;
sagitta = 1.0 - sqrt (1.0 - 0.5 * sagitta);
half_chord_length = 0.5 * half_chord_length / (1.0 - sagitta);
}
}
/* Flatten a simple path into a path of segment list type, consisting only
of line segments.
As supplied, the path may be perfectly general: it may be a segment list
(not all segments necessarily being line segments), or be a closed
primitive (box/circle/ellipse). If supplied path already consists only
of line segments (with an initial moveto and possibly a final
closepath), it is returned unchanged; this can be tested for by
comparing pointers for equality. If a new path is returned, it must be
freed with _delete_plPath(). */
plPath *
_flatten_path (const plPath *path)
{
plPath *newpath;
if (path == (plPath *)NULL)
return (plPath *)NULL;
switch (path->type)
{
case PATH_SEGMENT_LIST:
{
bool do_flatten = false;
int i;
for (i = 0; i < path->num_segments; i++)
{
if (path->segments[i].type != S_MOVETO
&& path->segments[i].type != S_LINE
&& path->segments[i].type != S_CLOSEPATH)
{
do_flatten = true;
break;
}
}
if (do_flatten == false)
newpath = (plPath *)path; /* just return original path */
else
{
newpath = _new_plPath ();
for (i = 0; i < path->num_segments; i++)
{
switch ((int)(path->segments[i].type))
{
case (int)S_MOVETO:
_add_moveto (newpath, path->segments[i].p);
break;
case (int)S_LINE:
_add_line (newpath, path->segments[i].p);
break;
case (int)S_CLOSEPATH:
_add_closepath (newpath);
break;
/* now, the types of segment we flatten: */
case (int)S_ARC:
_add_arc_as_lines (newpath,
path->segments[i].pc,
path->segments[i].p);
break;
case (int)S_ELLARC:
_add_ellarc_as_lines (newpath,
path->segments[i].pc,
path->segments[i].p);
break;
case (int)S_QUAD:
_add_bezier2_as_lines (newpath,
path->segments[i].pc,
path->segments[i].p);
break;
case (int)S_CUBIC:
_add_bezier3_as_lines (newpath,
path->segments[i].pc,
path->segments[i].pd,
path->segments[i].p);
break;
default: /* shouldn't happen */
break;
}
}
}
break;
}
case PATH_CIRCLE:
newpath = _new_plPath ();
_add_circle_as_lines (newpath,
path->pc, path->radius, path->clockwise);
break;
case PATH_ELLIPSE:
newpath = _new_plPath ();
_add_ellipse_as_lines (newpath,
path->pc, path->rx, path->ry, path->angle,
path->clockwise);
break;
case PATH_BOX:
newpath = _new_plPath ();
_add_box_as_lines (newpath, path->p0, path->p1, path->clockwise);
break;
default: /* shouldn't happen */
newpath = _new_plPath ();
break;
}
return newpath;
}
/**********************************************************************/
/* The code below exports the _merge_paths() function, which munges an
array of plPath objects and returns a new array. Heuristic
"path-merging" of this sort is performed in g_endpath.c when filling a
compound path (i.e., a multi-plPath path), if the output driver supports
only the filling of single plPaths. That is the case for nearly all of
libplot's output drivers.
`Child' paths are merged into their `parents', so each location in the
returned array where a child was present will contain NULL. Also, any
non-child that had no children will be returned without modification.
You should take this into account when freeing the returned array of
plPaths. Only the elements that are (1) non-NULL, and (2) differ from
the corresponding elements in the originally passed array should have
_delete_plPath() invoked on them. The array as a whole may be
deallocated by calling free().
The _merge_paths() function was inspired by a similar function in
Wolfgang Glunz's pstoedit, which was originally written by Burkhard
Plaum <plaum@ipf.uni-stuttgart.de>. */
/* Note: a well-formed plPath has the form:
{ moveto { line | arc }* { closepath }? }
The _merge_paths function was written to merge _closed_ plPath's,
i.e. ones whose endpoint is the same as the startpoint (possibly
implicitly, i.e. closepath is allowed). However, libplot applies it to
open paths too, in which case an `implicit closepath' is added to the
path to close it.
NOTE: The current release of libplot does not yet support `closepath'
segments at a higher level. So we regard a pass-in plPath as `closed'
if its last defining vertex is the same as the first. THIS CONVENTION
WILL GO AWAY. */
/* ad hoc structure for an annotated plPath, in particular one that has
been flattened into line segments and annotated; used only in this file,
for merging purposes */
typedef struct subpath_struct
{
plPathSegment *segments; /* segment array */
int num_segments; /* number of segments */
struct subpath_struct **parents; /* array of pointers to possible parents */
struct subpath_struct *parent; /* pointer to parent path */
struct subpath_struct **children; /* array of pointers to child paths */
int num_children; /* number of children */
int num_outside; /* number of subpaths outside this one */
double llx, lly, urx, ury; /* bounding box of the subpath */
bool inserted; /* subpath has been inserted into result? */
} subpath;
/* forward references */
/* 0. ctors, dtors */
static subpath * new_subpath (void);
static subpath ** new_subpath_array (int n);
static void delete_subpath (subpath *s);
static void delete_subpath_array (subpath **s, int n);
/* 1. functions that act on a subpath, i.e. an `annotated path' */
static bool is_inside_of (const subpath *s, const subpath *other);
static double _cheap_lower_bound_on_distance (const subpath *path1, const subpath *path2);
static void linearize_subpath (subpath *s);
static void read_into_subpath (subpath *s, const plPath *path);
/* 2. miscellaneous */
static void find_parents_in_subpath_list (subpath **annotated_paths, int num_paths);
static void insert_subpath (plPathSegment *parent_segments, const plPathSegment *child_segments, int parent_size, int child_size, int parent_index, int child_index);
static void _compute_closest (const plPathSegment *p1, const plPathSegment *p2, int size1, int size2, double *distance, int *index1, int *index2);
/**********************************************************************/
/* ctor for subpath class */
static subpath *
new_subpath (void)
{
subpath *s;
s = (subpath *)_pl_xmalloc (sizeof (subpath));
s->segments = (plPathSegment *)NULL;
s->num_segments = 0;
s->parents = (subpath **)NULL;
s->parent = (subpath *)NULL;
s->children = (subpath **)NULL;
s->num_children = 0;
s->num_outside = 0;
s->llx = DBL_MAX;
s->lly = DBL_MAX;
s->urx = -DBL_MAX;
s->ury = -DBL_MAX;
s->inserted = false;
return s;
}
/* corresponding ctor for a subpath array */
static subpath **
new_subpath_array (int n)
{
int i;
subpath **s;
s = (subpath **)_pl_xmalloc (n * sizeof (subpath *));
for (i = 0; i < n; i++)
s[i] = new_subpath ();
return s;
}
/* dtor for subpath class */
static void
delete_subpath (subpath *s)
{
if (s)
{
if (s->segments)
free (s->segments);
if (s->children)
free (s->children);
if (s->parents)
free (s->parents);
free (s);
}
}
/* corresponding dtor for a subpath array */
static void
delete_subpath_array (subpath **s, int n)
{
int i;
if (s)
{
for (i = 0; i < n; i++)
delete_subpath (s[i]);
free (s);
}
}
/* replace every segment in a subpath by a lineto (invoked only on a child
subpath, i.e. a subpath with an identified parent) */
static void
linearize_subpath (subpath *s)
{
/* replace first segment (moveto) with a lineto */
s->segments[0].type = S_LINE;
/* if final segment is a closepath, also replace with a lineto, back to
point #0 */
if (s->segments[s->num_segments-1].type == S_CLOSEPATH)
{
s->segments[s->num_segments-1].type = S_LINE;
s->segments[s->num_segments-1].p = s->segments[0].p;
}
}
/* Read a sequence of plPathSegments from a plPath into a previously empty
annotated subpath. (This is called only after the plPath has been
flattened, so the segments include no arcs.)
Because the way in which _merge_paths() is currently called in libplot,
we need to handle the possibility that the plPath may not be closed. If
it isn't, we add a closepath.
At present, we allow a final lineto to the start vertex to serve the
same purpose. THIS IS A LIBPLOT CONVENTION THAT WILL GO AWAY. */
static void
read_into_subpath (subpath *s, const plPath *path)
{
bool need_to_close = false;
int i;
/* sanity check */
if (path->type != PATH_SEGMENT_LIST)
return;
/* allocate space for segment array of subpath; add 1 extra slot for
manual closure, if needed */
s->segments = (plPathSegment *)_pl_xmalloc((path->num_segments + 1) * sizeof (plPathSegment));
s->num_segments = path->num_segments;
/* sanity check */
if (path->num_segments == 0)
return;
/* Is this path closed? If not, we'll close manually the annotated path
that we'll construct. WE CURRENTLY TREAT FINAL = INITIAL AS
INDICATING CLOSURE. */
if (path->segments[path->num_segments - 1].type != S_CLOSEPATH
&&
(path->segments[path->num_segments - 1].p.x != path->segments[0].p.x
|| path->segments[path->num_segments - 1].p.y != path->segments[0].p.y))
need_to_close = true;
/* copy the segments, updating bounding box to take each juncture point
into account */
for (i = 0; i < path->num_segments; i++)
{
plPathSegment e;
e = path->segments[i];
s->segments[i] = e;
if (e.p.x < s->llx)
s->llx = e.p.x;
if (e.p.y < s->lly)
s->lly = e.p.y;
if (e.p.x > s->urx)
s->urx = e.p.x;
if (e.p.y > s->ury)
s->ury = e.p.y;
}
if (need_to_close)
{
#if 0
s->segments[path->num_segments].type = S_CLOSEPATH;
#else /* currently, use line segment instead of closepath */
s->segments[path->num_segments].type = S_LINE;
#endif
s->segments[path->num_segments].p = path->segments[0].p;
s->num_segments++;
}
}
/* check if a subpath is inside another subpath */
static bool
is_inside_of (const subpath *s, const subpath *other)
{
int inside = 0;
int outside = 0;
int i;
/* if bbox fails to lie inside the other's bbox, false */
if (!((s->llx >= other->llx) && (s->lly >= other->lly) &&
(s->urx <= other->urx) && (s->ury <= other->ury)))
return false;
/* otherwise, check all juncture points */
for (i = 0; i < s->num_segments; i++)
{
bool point_is_inside;
if (s->segments[i].type == S_CLOSEPATH)
/* should have i = num_segments - 1, no associated juncture point */
continue;
/* Check if the vertex s->segments[i].p is inside `other'. Could be
done in a separate function, but we inline it for speed. */
{
/* These two factors should be small positive floating-point
numbers. They should preferably be incommensurate, to minimize
the probability of a degenerate case occurring: two line
segments intersecting at the endpoint of one or the other. */
#define SMALL_X_FACTOR (M_SQRT2 * M_PI)
#define SMALL_Y_FACTOR (M_SQRT2 + M_PI)
/* argument of the now-inlined function (besides `other') */
plPoint p;
/* local variables of the now-inlined function */
int k, crossings;
/* (x1,y1) is effectively the point at infinity */
double x1, y1;
/* (x2,y2) is specified point */
double x2, y2;
/* argument of the now-inlined function (besides `other') */
p = s->segments[i].p;
/* (x1,y1) is effectively the point at infinity */
x1 = (DMAX(p.x, other->urx)
+ SMALL_X_FACTOR * (DMAX(p.x, other->urx)
- DMIN(p.x, other->llx)));
y1 = (DMAX(p.y, other->ury)
+ SMALL_Y_FACTOR * (DMAX(p.y, other->ury)
- DMIN(p.y, other->lly)));
/* (x2,y2) is specified point */
x2 = p.x;
y2 = p.y;
crossings = 0;
for (k = 0; k < other->num_segments; k++)
{
int j;
double x3, y3, x4, y4, det, det1, det2;
if (other->segments[k].type == S_CLOSEPATH) /* k > 0 */
{
x3 = other->segments[k-1].p.x;
y3 = other->segments[k-1].p.y;
}
else
{
x3 = other->segments[k].p.x;
y3 = other->segments[k].p.y;
}
j = (k == other->num_segments - 1 ? 0 : k + 1);
if (other->segments[j].type == S_CLOSEPATH)
continue;
x4 = other->segments[j].p.x;
y4 = other->segments[j].p.y;
/* (x3,y3)-(x4,y4) is a line segment in the closed path */
/* Check whether the line segments (x1,y1)-(x2,y2) and
(x3-y3)-(x4,y4) cross each other.
System to solve is:
[p1 + (p2 - p1) * t1] - [p3 + (p4 - p3) * t2] = 0
i.e.
(x2 - x1) * t1 - (x4 - x3) * t2 = x3 - x1;
(y2 - y1) * t1 - (y4 - y3) * t2 = y3 - y1;
Solutions are: t1 = det1/det
t2 = det2/det
The line segments cross each other (in their interiors) if
0.0 < t1 < 1.0 and 0.0 < t2 < 1.0 */
det = (x2 - x1) * (-(y4 - y3)) - (-(x4 - x3)) * (y2 - y1);
if (det == 0.0)
/* line segments are parallel; ignore the degenerate case
that they might overlap */
continue;
det1 = (x3 - x1) * (-(y4 - y3)) - (-(x4 - x3)) * (y3 - y1);
det2 = (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
if ((det<0.0 && (det1>0.0 || det2>0.0 || det1<det || det2<det))
||
(det>0.0 && (det1<0.0 || det2<0.0 || det1>det || det2>det)))
/* solution for at least one of t1 and t2 is outside the
interval [0,1], so line segments do not cross */
continue;
/* We ignore the possibility that t1, t2 are both in the interval
[0,1], but
(t1 == 0.0) || (t1 == 1.0) || (t2 == 0.0) || (t2 == 1.0).
t1 == 0.0 should never happen, if p1 is effectively
the point at infinity.
So this degenerate case occurs only if the line segment
(x1,y1)-(x2,y2) goes through either (x3,y3) or (x4,y4), or
the specified point (x2,y2) lies on the line segment
(x3,y3)-(x4,y4) that is part of the path. */
crossings++;
}
/* our determination of whether the point is inside the path;
before we inlined this function, this was the return value */
point_is_inside = (crossings & 1) ? true : false;
}
/* increment inside,outside depending on whether or not the juncture
point was inside the other path */
if (point_is_inside)
inside++;
else
outside++;
}
/* make a democratic decision as to whether the path as a whole is inside
the other path */
return (inside > outside ? true : false);
}
/* Find parent (if any) of each subpath in a list of subpaths. When this
is invoked, each subpath should consist of an initial moveto, at least
one lineto, and a closepath (not currently enforced). */
static void
find_parents_in_subpath_list (subpath **annotated_paths, int num_paths)
{
int i, j;
subpath *parent;
/* determine for each subpath the subpaths that are nominally outside it */
for (i = 0; i < num_paths; i++)
{
annotated_paths[i]->parents = new_subpath_array (num_paths);
for (j = 0; j < num_paths; j++)
{
if (j != i)
{
if (is_inside_of (annotated_paths[i], annotated_paths[j]))
{
annotated_paths[i]->parents[annotated_paths[i]->num_outside] =
annotated_paths[j];
annotated_paths[i]->num_outside++;
}
}
}
}
/* Now find the real parent subpaths, i.e. the root subpaths. A subpath
is a parent subpath if the number of nominally-outside subpaths is
even, and is a child subpath only if the number is odd. An odd
number, together with a failure to find a suitable potential parent,
will flag a path as an isolate: technically a parent, but without
children. */
for (i = 0; i < num_paths; i++)
{
if ((annotated_paths[i]->num_outside & 1) == 0)
/* an even number of subpaths outside, definitely a parent
(i.e. doesn't have a parent itself, may or may not have children) */
{
/* allocate space for children (if any) */
annotated_paths[i]->children = new_subpath_array (num_paths);
}
}
/* now determine which are children, and link them to their parents */
for (i = 0; i < num_paths; i++)
{
if ((annotated_paths[i]->num_outside & 1) == 0)
/* even number outside, definitely a parent subpath (whether it has
children remains to be determined) */
continue;
else
/* odd number outside, possibly a child, so search linearly through
possible parents until we get a hit; if so, this is a child; if
not, this is an isolate (classed as a parent) */
{
for (j = 0; j < annotated_paths[i]->num_outside; j++)
{
if (annotated_paths[i]->num_outside ==
annotated_paths[i]->parents[j]->num_outside + 1)
/* number outside is one more than the number outside a
potential parent; flag as a child, and add it to the
parent's child list */
{
parent = annotated_paths[i]->parents[j];
annotated_paths[i]->parent = parent; /* give it a parent */
parent->children[parent->num_children] = annotated_paths[i];
parent->num_children++;
break;
}
}
}
}
}
/* Compute closest vertices in two paths. Indices of closest vertices, and
(squared) distance between them, are returned via pointers.
This is invoked in _merge_paths() only on paths that have been
flattened, and have had the initial moveto and the optional final
closepath replaced by line segments. So when this is called, each
segment type is S_LINE. */
static void
_compute_closest (const plPathSegment *p1, const plPathSegment *p2, int size1, int size2, double *distance, int *index1, int *index2)
{
int best_i = 0, best_j = 0; /* keep compiler happy */
double best_distance = DBL_MAX;
int ii, jj;
for (ii = 0; ii < size1; ii++)
{
plPoint point1;
point1 = p1[ii].p;
for (jj = 0; jj < size2; jj++)
{
double tmp1, tmp2, distance;
plPoint point2;
point2 = p2[jj].p;
tmp1 = point1.x - point2.x;
tmp2 = point1.y - point2.y;
distance = tmp1 * tmp1 + tmp2 * tmp2;
if (distance < best_distance)
{
best_distance = distance;
best_i = ii;
best_j = jj;
}
}
}
/* return the three quantities */
*distance = best_distance;
*index1 = best_i;
*index2 = best_j;
}
/* Compute a cheap lower bound on the (squared) distance between two
subpaths, by looking at their bounding boxes. */
static double
_cheap_lower_bound_on_distance (const subpath *path1, const subpath *path2)
{
double xdist = 0.0, ydist = 0.0, dist;
if (path1->urx < path2->llx)
xdist = path2->llx - path1->urx;
else if (path2->urx < path1->llx)
xdist = path1->llx - path2->urx;
if (path1->ury < path2->lly)
ydist = path2->lly - path1->ury;
else if (path2->ury < path1->lly)
ydist = path1->lly - path2->ury;
dist = xdist * xdist + ydist * ydist;
return dist;
}
/* Insert a closed child subpath into a closed parent, by connecting the
two, twice, at a specified vertex of the parent path and a specified
vertex of the child path. This is the key function invoked by
_merge_paths().
Both paths are supplied as segment lists, and all segments are lines;
the final segment of each is a line back to the starting point. I.e.,
for both subpaths, the final vertex duplicates the start vertex. So we
ignore the final vertex of the child (but not that of the parent).
I.e. if the child vertices are numbered 0..child_size-1, we map the case
child_index = child_size-1 to child_index = 0.
The new path has parent_size + child_size + 1 vertices, of which the
last is a repetition of the first. */
/* INDEX MAP:
PARENT -> NEW PATH
i --> i (if 0 <= i < parent_index + 1)
i --> i+child_size+1 (if parent_index + 1 <= i < parent_size)
CHILD -> NEW PATH
i --> i+parent_index+child_size-child_index (0 <= i < child_index+1)
i --> i+parent_index-child_index+1 (child_index+1 <= i < child_size-1)
(0'th element of the child is same as child_size-1 element)
NEW PATH CONTENTS
0..parent_index
0..parent_index of PARENT
parent_index+1
child_index of CHILD (i.e. ->join)
parent_index+2..parent_index+child_size-child_index-1
child_index+1..child_size-2 of CHILD
parent_index+child_size-child_index..parent_index+child_size
0..child_index of CHILD
parent_index+child_size+1
parent_index of PARENT (i.e. ->join)
parent_index+child_size+2..parent_size+child_size
parent_index+1..parent_size-1 of PARENT
*/
/* Macros that map from vertices in the child path and the parent path, to
vertices in the merged path. Here the argument `i' is the index in the
original path, and each macro evaluates to the index in the merger. */
/* The first macro should not be applied to i=child_size-1; as noted above,
that vertex is equivalent to i=0, so apply it to i=0 instead. */
#define CHILD_VERTEX_IN_MERGED_PATH(i,parent_index,parent_size,child_index,child_size) ((i) <= (child_index) ? (i) + (parent_index) + (child_size) - (child_index) : (i) + (parent_index) - (child_index) + 1)
#define PARENT_VERTEX_IN_MERGED_PATH(i,parent_index,parent_size,child_index,child_size) ((i) <= (parent_index) ? (i) : (i) + (child_size) + 1)
static void
insert_subpath (plPathSegment *parent, const plPathSegment *child, int parent_size, int child_size, int parent_index, int child_index)
{
int i;
plPathSegment e1, e2;
int src_index;
/* map case when joining vertex is final vertex of child to case when
it's the 0'th vertex */
if (child_index == child_size - 1)
child_index = 0;
/* move up: add child_size+1 empty slots to parent path */
for (i = parent_size - 1; i >= parent_index + 1; i--)
parent[i + child_size + 1] = parent[i];
/* add a line segment from specified vertex of parent path to specified
vertex of child path */
e1 = child[child_index];
e1.type = S_LINE; /* unnecessary */
parent[parent_index + 1] = e1;
/* copy vertices of child into parent, looping back to start in child if
necessary; note we skip the last (i.e. child_size-1'th) vertex, since
the 0'th vertex is the same */
src_index = child_index;
for (i = 0; i < child_size - 1; i++)
{
src_index++;
if (src_index == child_size - 1)
src_index = 0;
parent[parent_index + 2 + i] = child[src_index];
}
/* add a line segment back from specified vertex of child path to
specified vertex of parent path */
e2 = parent[parent_index];
e2.type = S_LINE;
parent[parent_index + child_size + 1] = e2;
}
/* The key function exported by this module, which is used by libplot for
filling compound paths. */
plPath **
_merge_paths (const plPath **paths, int num_paths)
{
int i;
subpath **annotated_paths;
plPath **flattened_paths;
plPath **merged_paths;
/* flatten every path to a list of line segments (some paths may come
back unaltered; will be able to compare pointers to check for that) */
flattened_paths = (plPath **)_pl_xmalloc (num_paths * sizeof(plPath *));
for (i = 0; i < num_paths; i++)
{
flattened_paths[i] = _flatten_path (paths[i]);
#ifdef DEBUG
fprintf (stderr, "path %d: %d segments, flattened to %d segments\n",
i, paths[i]->num_segments, flattened_paths[i]->num_segments);
#endif
}
/* Copy each flattened path into a corresponding annotated path
(`subpath'). Manual closure, if necessary (see above) is performed,
i.e. we always add a final closepath to close the path. At this stage
bounding boxes are computed. */
annotated_paths = new_subpath_array (num_paths);
for (i = 0; i < num_paths; i++)
read_into_subpath (annotated_paths[i], flattened_paths[i]);
/* Flattened paths no longer needed, so delete them carefully (some may
be the same as the original paths, due to _flatten_path() having
simply returned its argument) */
for (i = 0; i < num_paths; i++)
if (flattened_paths[i] != paths[i])
_delete_plPath (flattened_paths[i]);
/* determine which subpaths are parents, children */
find_parents_in_subpath_list (annotated_paths, num_paths);
/* in each child, replace each moveto/closepath by a lineto */
for (i = 0; i < num_paths; i++)
if (annotated_paths[i]->parent != (subpath *)NULL)
/* child path */
linearize_subpath (annotated_paths[i]);
/* create array of merged paths: parent paths will have child paths
merged into them, and child paths won't appear */
/* allocate space for new array, to be returned */
merged_paths = (plPath **)_pl_xmalloc (num_paths * sizeof(plPath *));
for (i = 0; i < num_paths; i++)
{
int j, k, num_segments_in_merged_path;
subpath *parent;
plPath *merged_path;
double *parent_to_child_distances;
int *child_best_indices, *parent_best_indices;
if (annotated_paths[i]->parent != (subpath *)NULL)
/* child path; original path will be merged into parent */
{
merged_paths[i] = (plPath *)NULL;
continue;
}
if (annotated_paths[i]->num_children == 0)
/* no parent, but no children either, so no merging done; in output
path array, place original unflattened path */
{
merged_paths[i] = (plPath *)paths[i];
continue;
}
/* this path must be a parent, with one or more children to be merged
into it; so create new empty `merged path' with segments array
that will hold it, and the merged-in children */
parent = annotated_paths[i];
num_segments_in_merged_path = parent->num_segments;
for (j = 0; j < parent->num_children; j++)
num_segments_in_merged_path
+= (parent->children[j]->num_segments + 1);
merged_path = _new_plPath ();
merged_path->segments = (plPathSegment *)_pl_xmalloc(num_segments_in_merged_path * sizeof (plPathSegment));
merged_path->num_segments = 0;
merged_path->segments_len = num_segments_in_merged_path;
/* copy parent path into new empty path, i.e. initialize the merged
path */
for (j = 0; j < parent->num_segments; j++)
merged_path->segments[j] = parent->segments[j];
merged_path->num_segments = parent->num_segments;
/* Create temporary storage for `closest vertex pairs' and inter-path
distances. We first compute the shortest distance between each
child path. We also keep track of the shortest distance between
each child and the merged path being constructed, and update it
when any child is added. */
parent_to_child_distances = (double *)_pl_xmalloc(parent->num_children * sizeof (double));
parent_best_indices = (int *)_pl_xmalloc(parent->num_children * sizeof (int));
child_best_indices = (int *)_pl_xmalloc(parent->num_children * sizeof (int));
/* compute closest vertices between merged path (i.e., right now, the
parent) and any child; these arrays will be updated when any child
is inserted into the merged path */
for (j = 0; j < parent->num_children; j++)
_compute_closest (parent->segments,
parent->children[j]->segments,
parent->num_segments,
parent->children[j]->num_segments,
&(parent_to_child_distances[j]),
&(parent_best_indices[j]),
&(child_best_indices[j]));
for (k = 0; k < parent->num_children; k++)
/* insert a child (the closest remaining one!) into the built-up
merged path; and flag the child as having been inserted so that
we don't pay attention to it thereafter */
{
double min_distance;
int closest = 0; /* keep compiler happy */
double *new_parent_to_child_distances;
int *new_child_best_indices, *new_parent_best_indices;
/* allocate storage for arrays that will be used to update the
three abovementioned arrays, with each pass through the loop */
new_parent_to_child_distances = (double *)_pl_xmalloc(parent->num_children * sizeof (double));
new_parent_best_indices = (int *)_pl_xmalloc(parent->num_children * sizeof (int));
new_child_best_indices = (int *)_pl_xmalloc(parent->num_children * sizeof (int));
/* initially, they're the same as the current arrays */
for (j = 0; j < parent->num_children; j++)
{
new_parent_to_child_distances[j] = parent_to_child_distances[j];
new_parent_best_indices[j] = parent_best_indices[j];
new_child_best_indices[j] = child_best_indices[j];
}
/* find closest child to merged path, which has not yet been
inserted */
min_distance = DBL_MAX;
for (j = 0; j < parent->num_children; j++)
{
if (parent->children[j]->inserted) /* ignore this child */
continue;
if (parent_to_child_distances[j] < min_distance)
{
closest = j;
min_distance = parent_to_child_distances[j];
}
}
/* closest remaining child has index `closest'; it will be
inserted into the current merged path */
/* loop over all children, skipping inserted ones and also
skipping `closest', the next child to be inserted */
for (j = 0; j < parent->num_children; j++)
{
double inter_child_distance;
int inter_child_best_index1, inter_child_best_index2;
double lower_bound_on_inter_child_distance;
bool compute_carefully;
if (parent->children[j]->inserted) /* ignore */
continue;
if (j == closest) /* ignore */
continue;
/* compute distance (and closest vertex pairs) between
`closest' and the j'th child; result is only of interest
if the distance is less than parent_to_child_distances[j],
so we first compute a cheap lower bound on the result by
looking at bounding boxes. */
lower_bound_on_inter_child_distance =
_cheap_lower_bound_on_distance (parent->children[j],
parent->children[closest]);
compute_carefully =
(lower_bound_on_inter_child_distance <
parent_to_child_distances[j]) ? true : false;
if (compute_carefully)
/* compute accurate inter-child distance; also which two
vertices yield the minimum distance */
_compute_closest (parent->children[j]->segments,
parent->children[closest]->segments,
parent->children[j]->num_segments,
parent->children[closest]->num_segments,
&inter_child_distance,
&inter_child_best_index1, /* vertex in j */
&inter_child_best_index2); /* in `closest' */
/* fill in j'th element of the new arrays
parent_to_child_distances[], parent_best_indices[] and
child_best_indices[] so as to take the insertion of the
child into account; but we don't update the old arrays
until we do the actual insertion */
if (compute_carefully &&
inter_child_distance < parent_to_child_distances[j])
/* j'th child is nearer to a vertex in `closest', the child
to be inserted, than to any vertex in the current merged
path, so all three arrays are affected */
{
int nearest_index_in_closest_child;
new_parent_to_child_distances[j] = inter_child_distance;
new_child_best_indices[j] = inter_child_best_index1;
nearest_index_in_closest_child = inter_child_best_index2;
/* Compute new value of parent_best_indices[j], taking
into account that `closest' will be inserted into the
merged path, thereby remapping the relevant index in
`closest'. The macro doesn't perform correctly if its
first arg takes the maximum possible value; so
instead, we map that possibility to `0'. See comment
above, before the macro definition. */
if (nearest_index_in_closest_child ==
parent->children[closest]->num_segments - 1)
nearest_index_in_closest_child = 0;
new_parent_best_indices[j] =
CHILD_VERTEX_IN_MERGED_PATH(nearest_index_in_closest_child,
parent_best_indices[closest],
merged_path->num_segments,
child_best_indices[closest],
parent->children[closest]->num_segments);
}
else
/* j'th child is nearer to a vertex in the current merged
path than to any vertex in `closest', the child to be
inserted into the merged path */
{
int nearest_index_in_parent;
nearest_index_in_parent = parent_best_indices[j];
/* compute new value of parent_best_indices[j], taking
into account that `closest' will be inserted into the
merged path, thereby remapping the relevant index in
the merged path */
new_parent_best_indices[j] =
PARENT_VERTEX_IN_MERGED_PATH(nearest_index_in_parent,
parent_best_indices[closest],
merged_path->num_segments,
child_best_indices[closest],
parent->children[closest]->num_segments);
}
}
/* do the actual insertion, by adding a pair of lineto's between
closest vertices; flag child as inserted */
insert_subpath (merged_path->segments,
parent->children[closest]->segments,
merged_path->num_segments,
parent->children[closest]->num_segments,
parent_best_indices[closest],
child_best_indices[closest]);
merged_path->num_segments +=
(parent->children[closest]->num_segments + 1);
parent->children[closest]->inserted = true;
/* update the old arrays to take insertion into account: replace
them by the new ones */
for (j = 0; j < parent->num_children; j++)
{
parent_to_child_distances[j] = new_parent_to_child_distances[j];
parent_best_indices[j] = new_parent_best_indices[j];
child_best_indices[j] = new_child_best_indices[j];
}
free (new_parent_to_child_distances);
free (new_parent_best_indices);
free (new_child_best_indices);
}
/* End of loop over all children of parent subpath; all >=1 children
have now been inserted into the parent, i.e. into the `merged
path' which the parent initialized. However, the merged path's
segments are all lines; so change the first to a moveto. */
merged_path->segments[0].type = S_MOVETO;
merged_paths[i] = merged_path;
/* NOTE: SHOULD ALSO REPLACE LAST LINE SEGMENT BY A CLOSEPATH! */
/* delete temporary storage for `closest vertex pairs' and inter-path
distances */
free (parent_to_child_distances);
free (parent_best_indices);
free (child_best_indices);
}
/* end of loop over parent subpaths */
/* no more annotated paths needed */
delete_subpath_array (annotated_paths, num_paths);
return merged_paths;
}
|