1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/* This file is part of the GNU plotutils package. Copyright (C) 1995,
1996, 1997, 1998, 1999, 2000, 2005, 2008, Free Software Foundation, Inc.
The GNU plotutils package is free software. You may redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software foundation; either version 2, or (at your
option) any later version.
The GNU plotutils package is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with the GNU plotutils package; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin St., Fifth Floor,
Boston, MA 02110-1301, USA. */
/* This file includes vector-related utility routines. */
#include "sys-defines.h"
#include "extern.h"
#define VLENGTH(v) sqrt( (v).x * (v).x + (v).y * (v).y )
/* Scale an input vector to a new length, and return it. */
plVector *
_vscale(plVector *v, double newlen)
{
double len = VLENGTH(*v);
if (len != 0.0)
{
v->x *= newlen/len;
v->y *= newlen/len;
}
return(v);
}
/* Compute angle (arctangent) of 2-D vector via atan2, but standardize
handling of singular cases. */
double
_xatan2 (double y, double x)
{
if (y == 0.0 && x >= 0.0)
return 0.0;
else if (y == 0.0 && x < 0.0)
return M_PI;
else if (x == 0.0 && y >= 0.0)
return M_PI_2;
else if (x == 0.0 && y < 0.0)
return -(M_PI_2);
else
return atan2(y, x);
}
/* Compute angle between vectors pc..p0 and pc..pp1, in range -pi..pi;
collinear vectors yield an angle of pi. This is used when drawing arcs. */
double
_angle_of_arc(plPoint p0, plPoint pp1, plPoint pc)
{
plVector v0, v1;
double cross, angle, angle0;
/* vectors from pc to p0, and pc to pp1 */
v0.x = p0.x - pc.x;
v0.y = p0.y - pc.y;
v1.x = pp1.x - pc.x;
v1.y = pp1.y - pc.y;
/* relative polar angle of p0 */
angle0 = _xatan2 (v0.y, v0.x);
/* cross product, zero means points are collinear */
cross = v0.x * v1.y - v1.x * v0.y;
if (cross == 0.0)
/* by libplot convention, sweep angle should be M_PI not -(M_PI), in
the collinear case */
angle = M_PI;
else
/* compute angle in range -(M_PI)..M_PI */
{
double angle1;
angle1 = _xatan2 (v1.y, v1.x);
angle = angle1 - angle0;
if (angle > M_PI)
angle -= (2.0 * M_PI);
else if (angle < -(M_PI))
angle += (2.0 * M_PI);
}
return angle;
}
/* Adjust the location of pc so it can be used as the center of a circle or
circular arc through p0 and p1. If pc does not lie on the line that
perpendicularly bisects the line segment from p0 to p1, it is projected
orthogonally onto it. p0 and p1 are assumed not to be coincident. */
plPoint
_truecenter(plPoint p0, plPoint p1, plPoint pc)
{
plPoint pm;
plVector a, b, c;
double scale;
/* midpoint */
pm.x = 0.5 * (p0.x + p1.x);
pm.y = 0.5 * (p0.y + p1.y);
/* a points along perpendicular bisector */
a.x = -p1.y + p0.y;
a.y = p1.x - p0.x;
/* b points from midpoint to pc */
b.x = pc.x - pm.x;
b.y = pc.y - pm.y;
/* c is orthogonal projection of b onto a */
scale = (a.x * b.x + a.y * b.y) / (a.x * a.x + a.y * a.y);
c.x = scale * a.x;
c.y = scale * a.y;
/* adjust pc */
pc.x = pm.x + c.x;
pc.y = pm.y + c.y;
return pc;
}
|