File: specfun.c

package info (click to toggle)
plotutils 2.6-15
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,040 kB
  • sloc: ansic: 68,670; sh: 20,086; cpp: 12,382; yacc: 2,588; makefile: 838; lex: 137
file content (862 lines) | stat: -rw-r--r-- 19,787 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/* This file is part of the GNU plotutils package. */

/* Copyright (C) 1997, 1998, 1998, 2005, 2008, 2009, Free Software
   Foundation, Inc. */

/* This file contains the five functions

   ibeta, igamma, norm, invnorm, inverf

   and versions of lgamma, erf, erfc for machines without them. */

/* The inspiration for this file was the file specfun.c that has long been
   a part of the gnuplot distribution.  However, the current version of the
   present file has been rewritten, largely from scratch, on the basis of
   published algorithms.  It is not dependent on the gnuplot specfun.c
   (which has included, and still includes, copyrighted code). */

#include "sys-defines.h"
#include "ode.h"
#include "extern.h"
#include <errno.h>

#define ITERMAX 200

#ifdef FLT_EPSILON
#define MACHEPS FLT_EPSILON /* 1.0E-08 */
#else
#define MACHEPS 1.0E-08
#endif
#ifdef FLT_MIN_EXP
#define MINEXP  FLT_MIN_EXP /* -88.0 */
#else
#define MINEXP  -88.0
#endif
#ifdef FLT_MAX_EXP
#define MAXEXP  FLT_MAX_EXP /* +88.0 */
#else
#define MAXEXP  88.0
#endif
#ifdef FLT_MAX
#define OFLOW   FLT_MAX /* 1.0E+37 */
#else
#define OFLOW   1.0E+37
#endif
#ifdef FLT_MAX_10_EXP
#define XBIG    FLT_MAX_10_EXP /* 2.55E+305 */
#else
#define XBIG    2.55E+305
#endif

#ifndef HUGE_VAL
#ifdef HUGE
#define HUGE_VAL HUGE
#else
#ifdef INF
#define HUGE_VAL INF
#else
#define HUGE_VAL OFLOW
#endif
#endif
#endif

/*
 * Mathematical constants
 */
#ifdef M_PI
#undef M_PI
#endif
#define M_PI 3.14159265358979323846264338327950288
#ifdef M_SQRT2
#undef M_SQRT2
#endif
#define M_SQRT2 1.41421356237309504880168872420969809
#define M_LNSQRT2PI 0.9189385332046727

/* Forward references */

/* The following gamma-related nonsense is necessary because (1) some
   vendors have lgamma(), some have gamma(), and some have neither [see
   include/sys-defines.h for further comments], (2) some vendors do not
   declare whichever function they have [e.g. Irix 5.3 requires an
   auxiliary preprocessing symbol to be defined for the declaration in
   math.h to be visible], and (3) some vendors supply broken versions which
   we can't use [e.g. AIX's libm.a gamma support is conspicuously broken],
   so we need to link in a replacement, but we can't use the same name for
   the external symbol `signgam'.  What a mess! -- rsm */
#ifdef NO_SYSTEM_GAMMA
#define SIGNGAM our_signgam
static int SIGNGAM;
double f_lgamma (double x);
static double lgamma_neg (double x);
static double lgamma_pos (double x);
#else  /* not NO_SYSTEM_GAMMA, we link in vendor code */
#define SIGNGAM signgam
extern int SIGNGAM;
#endif
double f_gamma (double x);

#ifndef HAVE_ERF
double erf (double x);
double erfc (double x);
#endif
double ibeta (double a, double b, double x);
double igamma (double a, double x);
double inverf (double x);
double invnorm (double x);
double norm (double x);
static double ibeta_internal (double a, double b, double x);


/*****************************************************************/
/************ Functions related to gamma function ****************/
/*****************************************************************/

/* Our gamma function.  F_LGAMMA(), which this calls, computes the log of
   the gamma function, with the sign being returned in SIGNGAM.  F_LGAMMA()
   is defined in include/sys-defines.h.  It may be a vendor-supplied
   lgamma(), a vendor-supplied gamma(), or our own f_lgamma (see below). */

double
f_gamma (double x)
{
#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  double y = F_LGAMMA(x);

  if (y > MAXEXP)
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"gamma";
      exc.arg1 = x;
      exc.retval = HUGE_VAL;
      exc.type = OVERFLOW;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "gamma: OVERFLOW error\n");
	  errno = ERANGE;
	}
      return exc.retval;
#else
      errno = ERANGE;
      return HUGE_VAL;
#endif
    }
  else
    return SIGNGAM * exp (y);
}

#ifdef NO_SYSTEM_GAMMA
/*
  Define our own lgamma(): compute log(Gamma(z)) for positive z as the sum
  of a suitably generated and truncated Lanczos series.  Lanczos series
  resemble Stirling (i.e. DeMoivre) asymptotic approximations, but unlike
  them are not asymptotic series; rather, they are convergent in the entire
  right half plane, on which a uniform bound on the error can be obtained.
  See C. Lanczos, "A Precision Approximation of the Gamma Function", SIAM
  J. Numerical Analysis 1B (1964), 86--96. */

double
f_lgamma (double z)
{
  SIGNGAM = 1;		      /* will return sign of Gamma(z) in SIGNGAM */

  if (z <= 0.0)
    return lgamma_neg (z);
  else
    return lgamma_pos (z);
}

/* Case I. z<=0 (if z < 0, reducible to z>0 case by reflection formula) */

static double
lgamma_neg (double z)
{
  double intpart, trigfac, retval;

#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  if (modf (-z, &intpart) == 0.0)
    /* z is nonpositive integer, so SING error */
    {
#ifdef HAVE_MATHERR
      exc.name = "lgamma";
      exc.arg1 = z;
      exc.retval = HUGE_VAL;
      exc.type = SING;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "lgamma: SING error\n");
	  errno = EDOM;
	}
      return (exc.retval);
#else
      errno = EDOM;
      return HUGE_VAL;
#endif /* HAVE_MATHERR */
    }

  /* use Euler's reflection formula, and call lgamma_pos() */
  trigfac = sin (M_PI * z) / M_PI;
  if (trigfac < 0.0)
    {
      trigfac = - trigfac;
      SIGNGAM = -1;
    }
  retval = - lgamma_pos (1.0 - z) - log (trigfac);

  if (fabs (retval) == HUGE_VAL)
    {
#ifdef HAVE_MATHERR
      exc.name = "lgamma";
      exc.arg1 = z;
      exc.retval = HUGE_VAL;
      exc.type = OVERFLOW;
      if (!matherr(&exc))
	errno = ERANGE;
      return (exc.retval);
#else
      errno = ERANGE;
      return HUGE_VAL;
#endif
    }

  return retval;
}

/* Case II. z>0, the primary case */

/* Lanczos parameter G (called lower-case gamma by him). "[A] large value
   of G is advocated if very high accuracy is demanded, but then the
   required number of terms will also be larger." */
#define LANCZOS_G 6

/* Values for coeffs of as many terms in the Lanczos expansion as are
   needed for this value of G, computed by Ray Toy <toy@rtp.ericsson.se>.
   (In his 1964 paper, Lanczos only went up to G=5.)  It is claimed (see
   gnuplot's specfun.c) that this value of G (i.e., 6) and number of terms
   will yield 14-digit accuracy everywhere except near z=1 and z=2. */

#define NUM_LANCZOS_TERMS 9
static const double lanczos[NUM_LANCZOS_TERMS] =
{
       .99999999999980993227684700473478296744476168282198,
    676.52036812188509856700919044401903816411251975244084,
  -1259.13921672240287047156078755282840836424300664868028,
    771.32342877765307884865282588943070775227268469602500,
   -176.61502916214059906584551353999392943274507608117860,
     12.50734327868690481445893685327104972970563021816420,
      -.13857109526572011689554706984971501358032683492780,
       .00000998436957801957085956266828104544089848531228,
       .00000015056327351493115583383579667028994545044040
};

static double
lgamma_pos (double z)
{
  double accum, retval;
  int i;

#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  accum = lanczos[0];
  for (i = 1; i < NUM_LANCZOS_TERMS; i++)
    accum += lanczos[i] / (z + i - 1);

  retval = (log (accum) + M_LNSQRT2PI - z - LANCZOS_G - 0.5
	    + (z - 0.5) * log (z + LANCZOS_G + 0.5));

  if (retval == HUGE_VAL)
    {
#ifdef HAVE_MATHERR
      exc.name = "lgamma";
      exc.arg1 = z;
      exc.retval = HUGE_VAL;
      exc.type = OVERFLOW;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "lgamma: OVERFLOW error\n");
	  errno = ERANGE;
	}
      return exc.retval;
#else
      errno = ERANGE;
      return HUGE_VAL;
#endif
    }

  return retval;
}
#endif /* NO_SYSTEM_GAMMA */



/*****************************************************************/
/************ Functions related to inverse beta function *********/
/*****************************************************************/

/* Our incomplete beta function, I_x(a,b).  Here a,b>0 and x is in [0,1].
   Returned value is in [0,1].  Note: this normalization convention is not
   universal.

   The formula given in Abramowitz & Stegun (Eq. 26.5.8) is used.  It
   includes a continued fraction expansion.  They say, "Best results are
   obtained when x < (a-1)/(a+b-2)."  We use it when x <= a/(a+b).

   This calls F_LGAMMA (e.g., lgamma()) to compute the prefactor in the
   formula. */

double
ibeta (double a, double b, double x)
{
  double retval;

#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  if (x < 0.0 || x > 1.0 || a <= 0.0 || b <= 0.0) /* DOMAIN error */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"ibeta";
      exc.arg1 = a;
      exc.arg2 = b;		/* have no arg3, can't return x (!) */
      exc.retval = HUGE_VAL;
      exc.type = DOMAIN;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "ibeta: DOMAIN error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return HUGE_VAL;
#endif
    }

  if (x == 0.0 || x == 1.0)
    return x;

  if (a < x * (a + b))
    /* interchange */
    retval = 1.0 - ibeta_internal (b, a, 1.0 - x);
  else
    retval = ibeta_internal (a, b, x);

  if (retval < 0.0)		/* error: failure of convergence */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"ibeta";
      exc.arg1 = a;
      exc.arg2 = b;		/* have no arg3, can't return x (!) */
      exc.retval = HUGE_VAL;
      exc.type = TLOSS;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "ibeta: TLOSS error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return HUGE_VAL;
#endif
    }

  return retval;
}

/* Evaluate convergents of the continued fraction by Wallis's method;
   return value will be positive, except that -1.0 is returned if there is
   no convergence. */

static double
ibeta_internal (double a, double b, double x)
{
  double A0, B0;
  double A2 = 1.0;
  double B2 = 0.0;
  double A1 = 1.0;
  double B1 = 1.0;
  double prefactor;
  double f0 = 0.0, f1 = 1.0;	/* f0 initted to quiet compiler */
  int goodf0, goodf1 = 1;
  int j;

  prefactor = exp (a * log (x) + b * log (1.0 - x)
		   + F_LGAMMA(a + b) - F_LGAMMA(a + 1.0) - F_LGAMMA(b));

  for (j = 1; j <= ITERMAX; j++)
    {
      double aj;
      int m;

      if (j % 2)		/* j odd, j = 2m + 1 */
	{
	  m = (j - 1)/2;
	  aj = - (a + m) * (a + b + m) * x / ((a + 2 * m) * (a + 2 * m + 1));
	}
      else			/* j even, j = 2m */
	{
	  m = j/2;
	  aj = m * (b - m) * x / ((a + 2 * m - 1) * (a + 2 * m));
	}

      A0 = 1.0 * A1 + aj * A2;
      B0 = 1.0 * B1 + aj * B2;
      
      if (B0 != 0.0)
	{
	  double ren;
	  
	  /* renormalize; don't really need to do this on each pass */
	  ren = 1.0 / B0;

	  A0 *= ren;
	  B0 = 1.0;
	  A1 *= ren;
	  B1 *= ren;

	  f0 = A0;
	  goodf0 = 1;
	  
	  /* test f0 = A0/B0 = A0 for exit */

	  if (goodf1 && fabs (f0 - f1) <= DMIN(MACHEPS, fabs (f0) * MACHEPS))
	    return (prefactor / f0);
	}
      else
	goodf0 = 0;

      /* shift down */
      A2 = A1;
      B2 = B1;
      A1 = A0;
      B1 = B0;
      f1 = f0;
      goodf1 = goodf0;
    }
  
  /* if we reached here, convergence failed */

  return -1.0;
}


/*****************************************************************/
/************ Functions related to incomplete gamma function *****/
/*****************************************************************/

/* Our incomplete gamma function, igamma(a,x) with a>0.0, x>=0.0.  Return
   value is in [0,1].  The algorithm is AS 239, documented in B. L. Shea,
   "Chi-Squared and Incomplete Gamma Integral", Applied Statistics 37
   (1988), 466-473.
   
   There have been claims that if 0<=x<=1, in which case Shea's algorithm
   uses Pearson's series rather than a continued fraction representation,
   an inaccurate value may result.  This has not been verified.  There have
   also been claims that the continued fraction representation is reliable
   only if x >= a+2, rather than x >= a (the latter being Shea's
   condition).  For safety, we use it only if x >= a+2. */

double
igamma (double a, double x)
{
  double arg, prefactor;
  int i;

#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  if (x < 0.0 || a <= 0.0)	/* DOMAIN error */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"igamma";
      exc.arg1 = a;
      exc.arg2 = x;
      exc.retval = HUGE_VAL;
      exc.type = DOMAIN;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "igamma: DOMAIN error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return HUGE_VAL;
#endif
    }

  if (x > XBIG)			/* TLOSS error */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"igamma";
      exc.arg1 = a;
      exc.arg2 = x;
      exc.retval = 1.0;
      exc.type = TLOSS;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "igamma: TLOSS error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return 1.0;
#endif
    }

  if (x == 0.0)
    return 0.0;

  /* check exponentiation in prefactor */
  arg = a * log (x) - x - F_LGAMMA(a + 1.0);
  if (arg < MINEXP)
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"igamma";
      exc.arg1 = a;
      exc.arg2 = x;
      exc.retval = 0.0;
      exc.type = TLOSS;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "ibeta: TLOSS error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return 0.0;
#endif
    }

  prefactor = exp (arg);

  if ((x > 1.0) && (x >= a + 2.0))
    /* use the continued fraction, not Pearson's series; generate its
       convergents by Wallis's method */
    {
      double A0, B0, A1, B1, A2, B2;
      double f0 = 0.0, f1;	/* f0 initted to quiet compiler */
      double aa, bb;
      int goodf0, goodf1 = 1;

      aa = 1.0 - a;
      bb = aa + x + 1.0;

      A2 = 1.0;
      B2 = x;
      A1 = x + 1.0;
      B1 = x * bb;
      f1 = A1 / B1;

      for (i = 1; i <= ITERMAX; i++)
	{
	  aa++;
	  bb += 2.0;
	
	  A0 = bb * A1 - i * aa * A2;
	  B0 = bb * B1 - i * aa * B2;
	
	  if (B0 != 0.0)
	    {
	      f0 = A0 / B0;
	      if (goodf1 && 
		  fabs (f0 - f1) <= DMIN(MACHEPS, fabs (f0) * MACHEPS))
		return (1.0 - prefactor * a * f0);

	      goodf0 = 1;
	    }
	  else
	    goodf0 = 0;

	  /* shift down */
	  A2 = A1;
	  B2 = B1;
	  A1 = A0;
	  B1 = B0;
	  f1 = f0;
	  goodf1 = goodf0;
	
	  if (fabs(A0) >= OFLOW)
	    /* renormalize */
	    {
	      A2 /= OFLOW;
	      B2 /= OFLOW;
	      A1 /= OFLOW;
	      B1 /= OFLOW;
	    }
	}
    }
  else
    /* use Pearson's series, not the continued fraction */
    {
      double aa, bb, cc;

      aa = a;
      bb = 1.0;
      cc = 1.0;

      for (i = 0; i <= ITERMAX; i++)
	{
	  aa++;
	  cc *= (x / aa);
	  bb += cc;
	  if (cc < bb * MACHEPS)
	    return prefactor * bb;
	}
    }

  /* if we reached here, convergence failed */

#ifdef HAVE_MATHERR
  exc.name = (char *)"igamma";
  exc.arg1 = a;
  exc.arg2 = x;
  exc.retval = HUGE_VAL;
  exc.type = TLOSS;
  if (!matherr (&exc))
    {
      fprintf (stderr, "ibeta: TLOSS error\n");
      errno = EDOM;
    }
  return exc.retval;
#else
  errno = EDOM;
  return HUGE_VAL;
#endif
}

#ifndef HAVE_ERF
double
erf (double x)
{
  return x < 0.0 ? -igamma (0.5, x * x) : igamma (0.5, x * x);
}

double
erfc (double x)
{
  return x < 0.0 ? 1.0 + igamma (0.5, x * x) : 1.0 - igamma (0.5, x * x);
}
#endif /* not HAVE_ERF */

double
norm (double x)
{
  return 0.5 * (1.0 + erf (0.5 * M_SQRT2 * x));
}


/*****************************************************************/
/************ Functions related to inverse error function ********/
/*****************************************************************/

/* Our inverse error function, inverf(x) with -1.0<x<1.0.  It approximates
   this (odd) function by four distinct degree-3 rational functions, each
   applying in a sub-interval of the right half-interval 0.0<x<1.0. */

/* rational function R0(x) */
static const double n0[4] =
  {
    -6.075593, 9.577584, -4.026908, 0.3110567
  };
static const double d0[4] =
  {
    -6.855572, 12.601905, -6.855985, 1.0
  };

/* rational function R1(w) */
static const double n1[4] =
  {
    -39.202359, 19.332985, -6.953050, 0.9360732
  };
static const double d1[4] =
  {
    -44.27977, 21.98546, -7.586103, 1.0
  };

/* rational function R2(w) */
static const double n2[4] =
  {
    -5.911558, 4.795462, -3.111584, 1.005405
  };
static const double d2[4] =
  {
    -6.266786, 4.666263, -2.962883, 1.0
  };

/* rational function R3(1/w) */
static const double n3[4] =
  {
    0.09952975, 0.51914515, -0.2187214, 1.0107864
  };
static const double d3[4] =
  {
    0.09952975, 0.5211733, -0.06888301, 1.0
  };


double
inverf (double x)
{
  static double num, den, retval;
  static int xsign;

#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  if (x <= -1.0 || x >= 1.0)	/* DOMAIN error */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"inverf";
      exc.arg1 = x;
      exc.retval = (x < 0.0 ? -HUGE_VAL : HUGE_VAL);
      exc.type = DOMAIN;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "inverf: DOMAIN error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return (x < 0.0 ? -HUGE_VAL : HUGE_VAL);
#endif
    }

  /* exploit oddness in x */
  xsign = (x >= 0.0 ? 1 : -1);
  x = (xsign > 0 ? x : -x);

  /* N.B. The numerator and denominator of each of these four rational
   approximants should really be written in nested polynomial form. */

  if (x <= 0.85)
    /* 0.0 <= x <= 0.85; use f = x R0(x**2), where R0 is degree-3 rational */
    {
      double y;
      
      y = x * x;
      num = n0[0] + n0[1]*y + n0[2]*y*y + n0[3]*y*y*y;
      den = d0[0] + d0[1]*y + d0[2]*y*y + d0[3]*y*y*y;

      retval = x * num / den;
    }
  else	/* x > 0.85 */
    {
      double w;

      w = sqrt (- log (1 - x * x)); /* w > 1.132 */
      
      /* note that as x->1-, i.e., w->infinity, retval is asymptotic to w,
	 to leading order */ 

      if (w <= 2.5)
	/* 1.132 < w <= 2.5; use f = w R1(w), where R1 is degree-3 rational */
	{
	  num = n1[0] + n1[1]*w + n1[2]*w*w + n1[3]*w*w*w;
	  den = d1[0] + d1[1]*w + d1[2]*w*w + d1[3]*w*w*w;
	  
	  retval = w * num / den;
	}
      
      else if (w <= 4.0)
	/* 2.5 < w <= 4.0; use f = w R2(w), where R2 is degree-3 rational */
	{
	  num = n2[0] + n2[1]*w + n2[2]*w*w + n2[3]*w*w*w;
	  den = d2[0] + d2[1]*w + d2[2]*w*w + d2[3]*w*w*w;
	  
	  retval = w * num / den;
	}
      
      else
	/* w > 4.0; use f = w R3(1/w), where R3 is degree-3 rational
	   with equal constant terms in numerator and denominator */
	{
	  double w1;
	  
	  w1 = 1.0 / w;

	  num = n3[0] + n3[1]*w1 + n3[2]*w1*w1 + n3[3]*w1*w1*w1;
	  den = d3[0] + d3[1]*w1 + d3[2]*w1*w1 + d3[3]*w1*w1*w1;
	  
	  retval = w * num / den;
	}
    }

  return (xsign > 0 ? retval : -retval);
}

/* Our inverse normal function (i.e., inverse Gaussian probability
   function), invnorm(x) with 0.0<x<1.0.  Trivially expressed in terms of
   inverf(), just as erf() can be expressed in terms of erfc().  */

double
invnorm (double x)
{
#ifdef HAVE_MATHERR
#ifdef __cplusplus
  struct __exception exc;
#else
  struct exception exc;
#endif
#endif

  if (x <= 0.0 || x >= 1.0)	/* DOMAIN error */
    {
#ifdef HAVE_MATHERR
      exc.name = (char *)"invnorm";
      exc.arg1 = x;
      exc.retval = HUGE_VAL;
      exc.type = DOMAIN;
      if (!matherr (&exc))
	{
	  fprintf (stderr, "invnorm: DOMAIN error\n");
	  errno = EDOM;
	}
      return exc.retval;
#else
      errno = EDOM;
      return HUGE_VAL;
#endif
    }

  return -M_SQRT2 * inverf (1.0 - 2 * x);
}