1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
.TH ODE 1 "Dec 1998" "FSF" "GNU Plotting Utilities"
.SH NAME
ode \- numerical solution of ordinary differential equations
.ig
Not all man macros define SB (and not all whatis parsers stop on .\")
..
.de SB
\&\fB\s-1\&\\$1 \\$2\s0\fR
..
.SH SYNOPSIS
.B ode
[
.I options
] [
.I file
]
.SH DESCRIPTION
.LP
.B ode
is a tool that solves, by numerical integration, the initial value problem
for a specified system of first-order ordinary differential equations.
Three distinct numerical integration schemes are available:
Runge\-Kutta\-Fehlberg (the default), Adams\-Moulton, and Euler. The
Adams\-Moulton and Runge\-Kutta schemes are available with adaptive step
size.
.LP
The operation of
.B ode
is specified by a program, written in its input language.
The program is simply a list of expressions for the derivatives of the
variables to be integrated, together with some control statements.
Some examples are given in the
.SB EXAMPLES
section.
.LP
.B ode
reads the program from the specified file, or from standard input if
no file name is given.
If reading from standard input, \fBode\fP
will stop reading and exit when it sees a single period on a line by
itself.
.LP
At each time step, the values of variables specified in the program are
written to standard output.
So a table of values will be produced, with each column showing the
evolution of a variable. If there are only two columns, the output
can be piped to
.BR graph (1)
or a similar plotting program.
.SH OPTIONS
.SS Input Options
.TP
.BI \-f " file"
.br
.ns
.TP
.BI \-\-input\-file " file"
Read input from \fIfile\fP\^ before reading from standard input.
This option makes it possible to work interactively, after reading a
program fragment that defines the system of differential equations.
.SS Output Options
.TP
.BI \-p " prec"
.br
.ns
.TP
.BI \-\-precision " prec"
When printing numerical results,
use \fIprec\fP\^ significant digits (the default is 6).
If this option is given, the print format will be scientific notation.
.TP
.B \-t
.br
.ns
.TP
.B \-\-title
Print a title line at the head of the output, naming the variables
in each column.
If this option is given, the print format will be scientific notation.
.SS Integration Scheme Options
The following options specify the numerical integration scheme.
Only one of the three basic options \fB\-R\fP, \fB\-A\fP, \fB\-E\fP
may be specified.
The default is \fB\-R\fP (Runge\-Kutta\-Fehlberg).
.TP
.BI \-R " [stepsize]"
.br
.ns
.TP
.BI \-\-runge\-kutta " [stepsize]"
Use a fifth-order Runge\-Kutta\-Fehlberg algorithm, with an adaptive
stepsize unless a constant stepsize is specified.
When a constant stepsize is specified and no error analysis is requested,
then a classical fourth-order Runge\-Kutta scheme is used.
.TP
.BI \-A " [stepsize]"
.br
.ns
.TP
.BI \-\-adams\-moulton " [stepsize]"
Use a fourth-order Adams\-Moulton predictor-corrector scheme, with an
adaptive stepsize unless a constant stepsize, \fIstepsize\fP\^, is
specified.
The Runge\-Kutta\-Fehlberg algorithm is used to get past `bad'
points (if any).
.TP
.BI \-E " [stepsize]"
.br
.ns
.TP
.BI \-\-euler " [stepsize]"
Use a `quick and dirty' Euler scheme, with a constant stepsize.
The default value of \fIstepsize\fP\^ is 0.1.
Not recommended for serious applications.
.IP ""
The error bound options \fB\-r\fP and \fB\-e\fP (see below) may not be used
if \fB\-E\fP is specified.
.TP
.BI \-h " hmin [hmax]"
.br
.ns
.TP
.BI \-\-step\-size\-bound " hmin [hmax]"
Use a lower bound \fIhmin\fP\^ on the stepsize.
The numerical scheme will not let the stepsize go below \fIhmin\fP\^.
The default is to allow the stepsize to shrink to the machine limit, i.e.,
the minimum nonzero double-precision floating point number.
.IP ""
The optional argument \fIhmax\fP\^, if included, specifies a maximum value
for the stepsize.
It is useful in preventing the numerical routine from skipping quickly over
an interesting region.
.SS Error Bound Options
.TP
.BI \-r " rmax [rmin]"
.br
.ns
.TP
.BI \-\-relative\-error\-bound " rmax [rmin]"
The \fB\-r\fP option sets an upper bound on the relative single-step error.
If the \fB\-r\fP option is used, the relative single-step error in any
dependent variable will never exceed \fIrmax\fP\^ (the default for which is
10^-9).
If this should occur, the solution will be abandoned and an error message
will be printed.
If the stepsize is not constant, the stepsize will be decreased
`adaptively', so that the upper bound on the single-step error is not
violated.
Thus, choosing a smaller upper bound on the single-step error will cause
smaller stepsizes to be chosen.
A lower bound \fIrmin\fP\^ may optionally be specified, to suggest when the
stepsize should be increased (the default for \fIrmin\fP\^ is
\fIrmax\fP\^/1000).
.TP
.BI \-e " emax [emin]"
.br
.ns
.TP
.BI \-\-absolute\-error\-bound " emax [emin]"
Similar to \fB\-r\fP, but bounds the absolute rather than the relative
single-step error.
.TP
.B \-s
.br
.ns
.TP
.B \-\-suppress\-error\-bound
Suppress the ceiling on single-step error, allowing \fBode\fP to continue
even if this ceiling is exceeded.
This may result in large numerical errors.
.SS Informational Options
.TP
.B \-\-help
Print a list of command-line options, and exit.
.TP
.B \-\-version
Print the version number of \fBode\fP and the plotting utilities package,
and exit.
.SH DIAGNOSTICS
.LP
Mostly self-explanatory.
The biggest exception is `syntax error', meaning there is a grammatical error.
Language error messages are of the form
.LP
.RS
.B ode: nnn: message\|.\|.\|.
.RE
.LP
where `nnn' is the number of the input line containing the error.
If the
.B \-f
option is used, the phrase "(file)" follows the `nnn' for errors encountered
inside the file.
Subsequently, when \fBode\fP begins reading the standard input,
line numbers start over from 1.
.LP
No effort is made to recover successfully from syntactic errors in the input.
However, there is a meager effort to resynchronize so more than one error
can be found in one scan.
.LP
Run-time errors elicit a message describing the problem, and the solution is
abandoned.
.SH EXAMPLES
The program
.LP
.RS
.B y' = y
.br
.B y = 1
.br
.B print t, y
.br
.B step 0, 1
.RE
.LP
solves an initial value problem whose solution is \fIy=e^t\fP\^.
When \fBode\fP runs this program, it will
write two columns of numbers to standard output.
Each line will show the value of the independent variable \fIt\fP\^, and
the variable \fIy\fP\^, as \fIt\fP\^ is stepped from 0 to 1.
.LP
A more sophisticated example would be
.LP
.RS
.B sine' = cosine
.br
.B cosine' = \-sine
.br
.B sine = 0
.br
.B cosine = 1
.br
.B print t, sine
.br
.B step 0, 2*PI
.RE
.LP
This program solves an initial value problem for a system of two
differential equations.
The initial value problem turns out to define the sine and cosine
functions.
The program steps the system over a full period.
.SH AUTHORS
\fBode\fP was written by Nicholas B. Tufillaro
.RB ( nbt@reed.edu ),
and slightly enhanced by Robert S. Maier
.RB ( rsm@math.arizona.edu )
to merge it into the GNU plotting utilities.
.SH "SEE ALSO"
"The GNU Plotting Utilities Manual".
.SH BUGS
Email bug reports to
.BR bug\-gnu\-utils@gnu.org .
|