1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/* This file is part of the GNU plotutils package. Copyright (C) 1995,
1996, 1997, 1998, 1999, 2000, 2005, 2008, Free Software Foundation, Inc.
The GNU plotutils package is free software. You may redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software foundation; either version 2, or (at your
option) any later version.
The GNU plotutils package is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with the GNU plotutils package; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin St., Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "sys-defines.h"
#include "extern.h"
/* Computes the product of two PS-style transformation matrices
(i.e. matrix representations of affine transformations). */
void
_matrix_product (const double m[6], const double n[6], double product[6])
{
double local_product[6];
local_product[0] = m[0] * n[0] + m[1] * n[2];
local_product[1] = m[0] * n[1] + m[1] * n[3];
local_product[2] = m[2] * n[0] + m[3] * n[2];
local_product[3] = m[2] * n[1] + m[3] * n[3];
local_product[4] = m[4] * n[0] + m[5] * n[2] + n[4];
local_product[5] = m[4] * n[1] + m[5] * n[3] + n[5];
memcpy (product, local_product, 6 * sizeof (double));
return;
}
/* Computes the inverse of a PS-style transformation matrix, which should
be nonsingular for correct results. */
void
_matrix_inverse (const double m[6], double inverse[6])
{
double det = m[0] * m[3] - m[1] * m[2];
if (det == 0.0)
/* bogus */
inverse[0] = inverse[1] = inverse[2] = inverse[3]
= inverse[4] = inverse[5] = 0.0;
else
{
double invdet = 1.0 / det;
inverse[0] = invdet * m[3];
inverse[1] = - invdet * m[1];
inverse[2] = - invdet * m[2];
inverse[3] = invdet * m[0];
inverse[4] = invdet * (m[2] * m[5] - m[3] * m[4]);
inverse[5] = invdet * (m[1] * m[4] - m[0] * m[5]);
}
}
/* _matrix_norm computes the matrix norm (in the l^2 sense) of the linear
transformation part of a PS-style transformation matrix. Actually we
compute instead the geometric mean of the l^1 and l^infinity norms. By
Hadamard's 3-line theorem, this geometric mean is an upper bound on the
true l^2 norm.
This function is called only to select appropriate line widths and font
sizes. For the purposes of those functions, the above approximation
should suffice. */
double
_matrix_norm (const double m[6])
{
double mt[4], pm[4];
double norm1, norm2;
double a[4];
int i;
mt[0] = m[0]; /* transpose of m */
mt[1] = m[2];
mt[2] = m[1];
mt[3] = m[3];
pm[0] = m[0] * mt[0] + m[1] * mt[2]; /* pm = m * mt */
pm[1] = m[0] * mt[1] + m[1] * mt[3];
pm[2] = m[2] * mt[0] + m[3] * mt[2];
pm[3] = m[2] * mt[1] + m[3] * mt[3];
for (i = 0; i < 4; i++)
a[i] = fabs(pm[i]);
/* compute l^1 and l^infinity norms of m * mt */
norm1 = DMAX(a[0]+a[1], a[2]+a[3]);
norm2 = DMAX(a[0]+a[2], a[1]+a[3]);
/* l^2 norm of m is sqrt of l^2 norm of m * mt */
return sqrt(sqrt(norm1 * norm2));
}
/* Compute the minimum and maximum singular values of a 2-by-2 matrix M.
The singular values are the square roots of the eigenvalues of M times
its transpose. */
void
_matrix_sing_vals (const double m[6], double *min_sing_val, double *max_sing_val)
{
double mt[4], pm[4];
double trace, det, disc, sqrtdisc;
double s1, s2;
mt[0] = m[0]; /* transpose of m */
mt[1] = m[2];
mt[2] = m[1];
mt[3] = m[3];
pm[0] = m[0] * mt[0] + m[1] * mt[2]; /* pm = m * mt */
pm[1] = m[0] * mt[1] + m[1] * mt[3];
pm[2] = m[2] * mt[0] + m[3] * mt[2];
pm[3] = m[2] * mt[1] + m[3] * mt[3];
trace = pm[0] + pm[3];
det = pm[0] * pm[3] - pm[1] * pm[2];
/* s^2 + b s + c = 0, where b = -trace, c = det */
disc = trace * trace - 4.0 * det;
disc = DMAX(0.0, disc); /* paranoia */
sqrtdisc = sqrt (disc);
s1 = 0.5 * (trace - sqrtdisc);
s2 = 0.5 * (trace + sqrtdisc);
s1 = DMAX(0.0, s1); /* paranoia */
s2 = DMAX(0.0, s2); /* paranoia */
*min_sing_val = sqrt(s1);
*max_sing_val = sqrt(s2);
}
|