File: x18.py

package info (click to toggle)
plplot 5.10.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,280 kB
  • ctags: 13,512
  • sloc: ansic: 83,001; xml: 27,081; ada: 18,878; cpp: 15,966; tcl: 11,651; python: 7,075; f90: 7,058; ml: 6,974; java: 6,665; perl: 5,029; sh: 2,210; makefile: 199; lisp: 75; sed: 25; fortran: 7
file content (154 lines) | stat: -rwxr-xr-x 3,239 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python
#
#	x18c.c
#
#	3-d line and point plot demo.  Adapted from x08c.c.

import math
import pl
import sys
import os

module_dir = "@MODULE_DIR@"

if module_dir[0] == '@':
	module_dir = os.getcwd ()

sys.path.insert (0, module_dir)

opt = [1, 0, 1, 0]

alt = [20.0, 35.0, 50.0, 65.0]

az = [30.0, 40.0, 50.0, 60.0]

# main
#
# Does a series of 3-d plots for a given data set, with different
# viewing options in each plot.

NPTS = 1000

def main():

	# Parse and process command line arguments

	# pl.ParseOpts(sys.argv, pl.PARSE_FULL)

	# Initialize plplot

	pl.init()

	for k in range(4):
		test_poly(k)

	x = []
	y = []
	z = []

	# From the mind of a sick and twisted physicist...

	for i in range(NPTS):
		z.append(-1. + 2. * i / NPTS)

		# Pick one ...

##		r = 1. - ( (float) i / (float) NPTS )
		r = z[i]

		x.append(r * math.cos( 2. * math.pi * 6. * i / NPTS ))
		y.append(r * math.sin( 2. * math.pi * 6. * i / NPTS ))

	for k in range(4):
		pl.adv(0)
		pl.vpor(0.0, 1.0, 0.0, 0.9)
		pl.wind(-1.0, 1.0, -0.9, 1.1)
		pl.col(1)
		pl.w3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0,
		       alt[k], az[k])
		pl.box3("bnstu", "x axis", 0.0, 0,
			"bnstu", "y axis", 0.0, 0,
			"bcdmnstuv", "z axis", 0.0, 0)

		pl.col(2)

		if opt[k]:
			pl.line3(x, y, z)
		else:
			pl.poin3(x, y, z, 1)

		pl.col(3)
		title = "#frPLplot Example 18 - Alt=%.0f, Az=%.0f" % (alt[k],
								      az[k])
		pl.mtex("t", 1.0, 0.5, 0.5, title)

	pl.end()

def test_poly(k):

	draw = [ [ 1, 1, 1, 1 ],
		 [ 1, 0, 1, 0 ],
		 [ 0, 1, 0, 1 ],
		 [ 1, 1, 0, 0 ] ]

	pl.adv(0)
	pl.vpor(0.0, 1.0, 0.0, 0.9)
	pl.wind(-1.0, 1.0, -0.9, 1.1)
	pl.col(1)
	pl.w3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k])
	pl.box3("bnstu", "x axis", 0.0, 0,
		"bnstu", "y axis", 0.0, 0,
		"bcdmnstuv", "z axis", 0.0, 0)

	pl.col(2)

	def THETA(a):
		return 2. * math.pi * (a) / 20.
	def PHI(a):
		return math.pi * (a) / 20.1

##      x = r sin(phi) cos(theta)
##      y = r sin(phi) sin(theta)
##      z = r cos(phi)
##      r = 1 :=)

	for i in range(20):
		for j in range(20):
			x = []
			y = []
			z = []

			x.append(math.sin( PHI(j) ) * math.cos( THETA(i) ))
			y.append(math.sin( PHI(j) ) * math.sin( THETA(i) ))
			z.append(math.cos( PHI(j) ))

			x.append(math.sin( PHI(j) ) * math.cos( THETA(i+1) ))
			y.append(math.sin( PHI(j) ) * math.sin( THETA(i+1) ))
			z.append(math.cos( PHI(j) ))

			x.append(math.sin( PHI(j+1) ) * math.cos( THETA(i+1) ))
			y.append(math.sin( PHI(j+1) ) * math.sin( THETA(i+1) ))
			z.append(math.cos( PHI(j+1) ))

			x.append(math.sin( PHI(j+1) ) * math.cos( THETA(i) ))
			y.append(math.sin( PHI(j+1) ) * math.sin( THETA(i) ))
			z.append(math.cos( PHI(j+1) ))

			x.append(math.sin( PHI(j) ) * math.cos( THETA(i) ))
			y.append(math.sin( PHI(j) ) * math.sin( THETA(i) ))
			z.append(math.cos( PHI(j) ))

			# N.B.: The Python poly3 no longer takes a
			# (possibly negative) length argument, so if
			# you want to pass a counterclockwise polygon
			# you now have to reverse the list.  The code
			# above was rearranged to create a clockwise
			# polygon instead of a counterclockwise
			# polygon.

			pl.poly3(x, y, z, draw[k])

	pl.col(3)
	pl.mtex("t", 1.0, 0.5, 0.5, "unit radius sphere" )

main()