File: xw11.py

package info (click to toggle)
plplot 5.10.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,280 kB
  • ctags: 13,512
  • sloc: ansic: 83,001; xml: 27,081; ada: 18,878; cpp: 15,966; tcl: 11,651; python: 7,075; f90: 7,058; ml: 6,974; java: 6,665; perl: 5,029; sh: 2,210; makefile: 199; lisp: 75; sed: 25; fortran: 7
file content (146 lines) | stat: -rw-r--r-- 4,673 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# $Id: xw11.py 11680 2011-03-27 17:57:51Z airwin $

#  Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Alan W. Irwin

#  Mesh plot demo.
#
#  This file is part of PLplot.
#
#  PLplot is free software; you can redistribute it and/or modify
#  it under the terms of the GNU Library General Public License as published
#  by the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  PLplot is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Library General Public License for more details.
#
#  You should have received a copy of the GNU Library General Public License
#  along with PLplot; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#

from plplot_py_demos import *

XPTS = 35		# Data points in x
YPTS = 46		# Data points in y
opt = [3, 3]

alt = [33.0, 17.0]

az = [24.0, 115.0]

title = ["#frPLplot Example 11 - Alt=33, Az=24, Opt=3",
	 "#frPLplot Example 11 - Alt=17, Az=115, Opt=3"]

# Routine for restoring colour map1 to default.
# See static void plcmap1_def(void) in plctrl.c for reference.
def restore_cmap1():
    # For center control points, pick black or white, whichever is closer to bg 
    # Be careful to pick just short of top or bottom else hue info is lost
    vertex = sum(array(plgcolbg()))/(3.*255.)
    if vertex < 0.5:
	vertex = 0.01
	midpt = 0.10
    else:
	vertex = 0.99
	midpt = 0.90
    # Independent variable of control points.
    i = array((0., 0.44, 0.50, 0.50, 0.56, 1.))
    # Hue for control points.  Blue-violet to red
    h = array((260., 260., 260., 0., 0., 0.))
    # Lightness ranging from medium to vertex to medium
    l = array((0.5, midpt, vertex, vertex, midpt, 0.5))
    # Saturation is complete for default
    s = array((1., 1., 1., 1., 1., 1.))
    # Default number of cmap1 colours
    plscmap1n(128)
    # Interpolate between control points to set up default cmap1.
    plscmap1l(0, i, h, l, s)

# Routine for defining a specific color map 1 in HLS space.
# if gray is true, use basic grayscale variation from half-dark to light.
# otherwise use false color variation from blue (240 deg) to red (360 deg).
def cmap1_init(gray):
    # Independent variable of control points.
    i = array((0., 1.))
    if gray:
	# Hue for control points.  Doesn't matter since saturation is zero.
	h = array((0., 0.))
	# Lightness ranging from half-dark (for interest) to light.
	l = array((0.5, 1.))
	# Gray scale has zero saturation
	s = array((0., 0.))
    else:
	# Hue ranges from blue (240 deg) to red (0 or 360 deg)
	h = array((240., 0.))
	# Lightness and saturation are constant (values taken from C example).
	l = array((0.6, 0.6))
	s = array((0.8, 0.8))

    # number of cmap1 colours is 256 in this case.
    plscmap1n(256)
    # Interpolate between control points to set up cmap1.
    plscmap1l(0, i, h, l, s)
# main
#
# Does a series of mesh plots for a given data set, with different
# viewing options in each plot.

def main():

    x = 3.*(arange(XPTS) - (XPTS / 2)) / float(XPTS / 2)
    y = 3.*(arange(YPTS) - (YPTS / 2)) / float(YPTS / 2)
    x.shape = (-1,1)
    z = 3. * (1.-x)*(1.-x) * exp(-(x*x) - (y+1.)*(y+1.)) - \
        10. * (x/5. - pow(x,3.) - pow(y,5.)) * exp(-x*x-y*y) - \
        1./3. * exp(-(x+1)*(x+1) - (y*y))
#    if 0: #Jungfraujoch/Interlaken 
    # Not sure this is correct coding for truncating at -1, but
    # not activated anyway so ignore this question for now.
#	z = max(z,-1)
    x.shape = (-1,)

    zmin = min(z.flat)
    zmax = max(z.flat)
    nlevel = 10
    step = (zmax-zmin)/(nlevel+1)
    clevel = zmin + step + arange(nlevel)*step
    cmap1_init(0)
    for k in range(2):
	for i in range(4):
	    pladv(0)
	    plcol0(1)
	    plvpor(0.0, 1.0, 0.0, 0.9)
	    plwind(-1.0, 1.0, -1.0, 1.5)
	    plw3d(1.0, 1.0, 1.2, -3.0, 3.0, -3.0, 3.0, zmin, zmax, alt[k], az[k])
	    plbox3("bnstu", "x axis", 0.0, 0,
		"bnstu", "y axis", 0.0, 0,
		"bcdmnstuv", "z axis", 0.0, 4)
	    plcol0(2)

	    #wireframe plot
            if i==0:
		plmesh(x, y, z, opt[k])

	    # magnitude colored wireframe plot
	    elif i==1:
		plmesh(x, y, z, opt[k] | MAG_COLOR)

	    # magnitude colored wireframe plot with sides
	    elif i==2:
		plot3d(x, y, z, opt[k] | MAG_COLOR, 1)

	    # magnitude colored wireframe plot with base contour
	    elif i==3:
		plmeshc(x, y, z, opt[k] | MAG_COLOR | BASE_CONT, clevel)


	    plcol0(3)
	    plmtex("t", 1.0, 0.5, 0.5, title[k])

    # Restore defaults
    #plcol0(1)
    restore_cmap1()
main()