1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
#!/usr/bin/env python
# $Id: xw14.py 12340 2013-05-10 22:12:04Z andrewross $
# Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Alan W. Irwin
# Demo of multiple stream/window capability.
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#
# Append to effective python path so that can find plplot modules.
from plplot_python_start import *
import sys
from plplot import *
# Parse and process command line arguments
plparseopts(sys.argv, PL_PARSE_FULL)
# Simple line plot and multiple windows demo.
from plplot_py_demos import *
def main():
geometry_master = "500x410+100+200"
geometry_slave = "500x410+650+200"
driver = plgdev()
(fam, num, bmax) = plgfam()
print "Demo of multiple output streams via the %s driver." % driver
print "Running with the second stream as slave to the first."
print ""
# Set up the first stream.
plsetopt("geometry", geometry_master)
plsdev(driver)
plssub(2, 2)
plinit()
# Start next stream.
plsstrm(1)
# Turn off pause to make this a slave (must follow master)
plsetopt("geometry", geometry_slave)
plspause(0)
plsdev(driver)
plsfam(fam, num, bmax)
plsetopt("fflen","2")
plinit()
# Set up the data & plot
# Original case
plsstrm(0)
xscale = 6.
yscale = 1.
xoff = 0.
yoff = 0.
plot1(xscale, yscale, xoff, yoff)
# Set up the data & plot
xscale = 1.
yscale = 1.e+6
plot1(xscale, yscale, xoff, yoff)
# Set up the data & plot
xscale = 1.
yscale = 1.e-6
digmax = 2
plsyax(digmax, 0)
plot1(xscale, yscale, xoff, yoff)
# Set up the data & plot
xscale = 1.
yscale = 0.0014
yoff = 0.0185
digmax = 5
plsyax(digmax, 0)
plot1(xscale, yscale, xoff, yoff)
# To slave
# The pleop() ensures the eop indicator gets lit.
plsstrm(1)
plot4()
pleop()
# Back to master
plsstrm(0)
plot2()
plot3()
# To slave
plsstrm(1)
plot5()
pleop()
# Back to master to wait for user to advance
plsstrm(0)
pleop()
# ===============================================================
def plot1(xscale, yscale, xoff, yoff):
x = xoff + (xscale/60.)*(1+arange(60))
y = yoff + yscale*pow(x,2.)
xmin = x[0]
xmax = x[59]
ymin = y[0]
ymax = y[59]
xs = x[3::10]
ys = y[3::10]
# Set up the viewport and window using pl.env. The range in X
# is 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes
# are scaled separately (just = 0), and we just draw a
# labelled box (axis = 0).
plcol0(1)
plenv(xmin, xmax, ymin, ymax, 0, 0)
plcol0(6)
pllab("(x)", "(y)", "#frPLplot Example 1 - y=x#u2")
# Plot the data points
plcol0(9)
plpoin(xs, ys, 9)
# Draw the line through the data
plcol0(4)
plline(x, y)
plflush()
# ===============================================================
def plot2():
# Set up the viewport and window using pl.env. The range in X
# is -2.0 to 10.0, and the range in Y is -0.4 to 2.0. The axes
# are scaled separately (just = 0), and we draw a box with
# axes (axis = 1).
plcol0(1)
plenv(-2.0, 10.0, -0.4, 1.2, 0, 1)
plcol0(2)
pllab("(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function")
# Fill up the arrays
x = (arange(100)-19)/6.0
if 0.0 in x:
#replace 0.0 by small value that gives the same sinc(x) result.
x[list(x).index(0.0)] = 1.e-30
y = sin(x)/x
# Draw the line
plcol0(3)
plline(x, y)
plflush()
# ===============================================================
def plot3():
# For the final graph we wish to override the default tick
# intervals, so do not use pl.env
pladv(0)
# Use standard viewport, and define X range from 0 to 360
# degrees, Y range from -1.2 to 1.2.
plvsta()
plwind(0.0, 360.0, -1.2, 1.2)
# Draw a box with ticks spaced 60 degrees apart in X, and 0.2 in Y.
plcol0(1)
plbox("bcnst", 60.0, 2, "bcnstv", 0.2, 2)
# Superimpose a dashed line grid, with 1.5 mm marks and spaces.
# plstyl expects a pointer!!
plstyl([1500], [1500])
plcol0(2)
plbox("g", 30.0, 0, "g", 0.2, 0)
plstyl([], [])
plcol0(3)
pllab("Angle (degrees)", "sine", "#frPLplot Example 1 - Sine function")
x = 3.6*arange(101)
y = sin((pi/180.)*x)
plcol0(4)
plline(x, y)
plflush()
# ===============================================================
def plot4():
dtr = pi / 180.0
x0 = cos(dtr*arange(361))
y0 = sin(dtr*arange(361))
# Set up viewport and window, but do not draw box
plenv(-1.3, 1.3, -1.3, 1.3, 1, -2)
i = 0.1*arange(1,11)
#outerproduct(i,x0) and outerproduct(i,y0) is what we are
#mocking up here since old Numeric version does not have outerproduct.
i.shape = (-1,1)
x=i*x0
y=i*y0
# Draw circles for polar grid
for i in range(10):
plline(x[i], y[i])
plcol0(2)
for i in range(12):
theta = 30.0 * i
dx = cos(dtr * theta)
dy = sin(dtr * theta)
# Draw radial spokes for polar grid
pljoin(0.0, 0.0, dx, dy)
# Write labels for angle
text = `int(theta)`
#Slightly off zero to avoid floating point logic flips at 90 and 270 deg.
if dx >= -0.00001:
plptex(dx, dy, dx, dy, -0.15, text)
else:
plptex(dx, dy, -dx, -dy, 1.15, text)
# Draw the graph
r = sin((dtr*5.)*arange(361))
x = x0*r
y = y0*r
plcol0(3)
plline(x, y)
plcol0(4)
plmtex("t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh")
plflush()
# ===============================================================
XPTS = 35
YPTS = 46
XSPA = 2./(XPTS-1)
YSPA = 2./(YPTS-1)
tr = array((XSPA, 0.0, -1.0, 0.0, YSPA, -1.0))
def mypltr(x, y, data):
result0 = data[0] * x + data[1] * y + data[2]
result1 = data[3] * x + data[4] * y + data[5]
return array((result0, result1))
def plot5():
mark = 1500
space = 1500
clevel = -1. + 0.2*arange(11)
xx = (arange(XPTS) - XPTS/2) / float((XPTS/2))
yy = (arange(YPTS) - YPTS/2) / float((YPTS/2)) - 1.
xx.shape = (-1,1)
z = (xx*xx)-(yy*yy)
# 2.*outerproduct(xx,yy) for new versions of Numeric which have outerproduct.
w = 2.*xx*yy
plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
plcol0(2)
plcont(z, clevel, mypltr, tr)
plstyl([mark], [space])
plcol0(3)
plcont(w, clevel, mypltr, tr)
plstyl([], [])
plcol0(1)
pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
plflush()
# ===============================================================
main()
plend()
|