File: lpi.c

package info (click to toggle)
plplot 5.10.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 26,280 kB
  • ctags: 13,512
  • sloc: ansic: 83,001; xml: 27,081; ada: 18,878; cpp: 15,966; tcl: 11,651; python: 7,075; f90: 7,058; ml: 6,974; java: 6,665; perl: 5,029; sh: 2,210; makefile: 199; lisp: 75; sed: 25; fortran: 7
file content (168 lines) | stat: -rw-r--r-- 4,407 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//--------------------------------------------------------------------------
//
// File:           linear.c
//
// Created:        04/08/2000
//
// Author:         Pavel Sakov
//                 CSIRO Marine Research
//
// Purpose:        2D linear interpolation
//
// Description:    `lpi' -- "Linear Point Interpolator" -- is
//                 a structure for conducting linear interpolation on a given
//                 data on a "point-to-point" basis. It interpolates linearly
//                 within each triangle resulted from the Delaunay
//                 triangluation of input data. `lpi' is much
//                 faster than all Natural Neighbours interpolators in `nn'
//                 library.
//
// Revisions:      None
//
//--------------------------------------------------------------------------

#include <stdlib.h>
#include <stdio.h>
#include "nan.h"
#include "delaunay.h"

typedef struct
{
    double w[3];
} lweights;

struct lpi
{
    delaunay* d;
    lweights* weights;
};

int delaunay_xytoi( delaunay* d, point* p, int seed );

// Builds linear interpolator.
//
// @param d Delaunay triangulation
// @return Linear interpolator
//
lpi* lpi_build( delaunay* d )
{
    int i;
    lpi * l = malloc( sizeof ( lpi ) );

    l->d       = d;
    l->weights = malloc( (size_t) d->ntriangles * sizeof ( lweights ) );

    for ( i = 0; i < d->ntriangles; ++i )
    {
        triangle* t  = &d->triangles[i];
        lweights* lw = &l->weights[i];
        double  x0   = d->points[t->vids[0]].x;
        double  y0   = d->points[t->vids[0]].y;
        double  z0   = d->points[t->vids[0]].z;
        double  x1   = d->points[t->vids[1]].x;
        double  y1   = d->points[t->vids[1]].y;
        double  z1   = d->points[t->vids[1]].z;
        double  x2   = d->points[t->vids[2]].x;
        double  y2   = d->points[t->vids[2]].y;
        double  z2   = d->points[t->vids[2]].z;
        double  x02  = x0 - x2;
        double  y02  = y0 - y2;
        double  z02  = z0 - z2;
        double  x12  = x1 - x2;
        double  y12  = y1 - y2;
        double  z12  = z1 - z2;

        if ( y12 != 0.0 )
        {
            double y0212 = y02 / y12;

            lw->w[0] = ( z02 - z12 * y0212 ) / ( x02 - x12 * y0212 );
            lw->w[1] = ( z12 - lw->w[0] * x12 ) / y12;
            lw->w[2] = ( z2 - lw->w[0] * x2 - lw->w[1] * y2 );
        }
        else
        {
            double x0212 = x02 / x12;

            lw->w[1] = ( z02 - z12 * x0212 ) / ( y02 - y12 * x0212 );
            lw->w[0] = ( z12 - lw->w[1] * y12 ) / x12;
            lw->w[2] = ( z2 - lw->w[0] * x2 - lw->w[1] * y2 );
        }
    }

    return l;
}

// Destroys linear interpolator.
//
// @param l Structure to be destroyed
//
void lpi_destroy( lpi* l )
{
    free( l->weights );
    free( l );
}

// Finds linearly interpolated value in a point.
//
// @param l Linear interpolation
// @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
//
void lpi_interpolate_point( lpi* l, point* p )
{
    delaunay* d = l->d;
    int     tid = delaunay_xytoi( d, p, d->first_id );

    if ( tid >= 0 )
    {
        lweights* lw = &l->weights[tid];

        d->first_id = tid;
        p->z        = p->x * lw->w[0] + p->y * lw->w[1] + lw->w[2];
    }
    else
        p->z = NaN;
}

// Linearly interpolates data from one array of points for another array of
// points.
//
// @param nin Number of input points
// @param pin Array of input points [pin]
// @param nout Number of ouput points
// @param pout Array of output points [nout]
//
void lpi_interpolate_points( int nin, point pin[], int nout, point pout[] )
{
    delaunay* d  = delaunay_build( nin, pin, 0, NULL, 0, NULL );
    lpi     * l  = lpi_build( d );
    int     seed = 0;
    int     i;

    if ( nn_verbose )
    {
        fprintf( stderr, "xytoi:\n" );
        for ( i = 0; i < nout; ++i )
        {
            point* p = &pout[i];

            fprintf( stderr, "(%.7g,%.7g) -> %d\n", p->x, p->y, delaunay_xytoi( d, p, seed ) );
        }
    }

    for ( i = 0; i < nout; ++i )
        lpi_interpolate_point( l, &pout[i] );

    if ( nn_verbose )
    {
        fprintf( stderr, "output:\n" );
        for ( i = 0; i < nout; ++i )
        {
            point* p = &pout[i];;
            fprintf( stderr, "  %d:%15.7g %15.7g %15.7g\n", i, p->x, p->y, p->z );
        }
    }

    lpi_destroy( l );
    delaunay_destroy( d );
}