1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
//--------------------------------------------------------------------------
//
// File: nncommon.c
//
// Created: 04/08/2000
//
// Author: Pavel Sakov
// CSIRO Marine Research
//
// Purpose: Common stuff for NN interpolation library
//
// Description: None
//
// Revisions: 15/11/2002 PS: Changed name from "utils.c"
// 28/02/2003 PS: Modified points_read() to do the job without
// rewinding the file. This allows to read from stdin when
// necessary.
// 09/04/2003 PS: Modified points_read() to read from a
// file specified by name, not by handle.
// Modified: Andrew Ross 20/10/2008
// Change <= comparison in circle_contains() to use EPSILON
// to catch case where the point lies on the circle and there
// is floating point rounding error in the radii.
//
//--------------------------------------------------------------------------
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include <string.h>
#include <errno.h>
#include "nan.h"
#include "delaunay.h"
#define BUFSIZE 1024
#define EPSILON 1.0e-8
int nn_verbose = 0;
int nn_test_vertice = -1;
NN_RULE nn_rule = SIBSON;
#include "version.h"
void nn_quit( const char* format, ... );
int circle_build( circle* c, point* p1, point* p2, point* p3 );
int circle_contains( circle* c, point* p );
void nn_quit( const char* format, ... )
{
va_list args;
fflush( stdout ); // just in case, to have the exit message
// last
fprintf( stderr, "error: nn: " );
va_start( args, format );
vfprintf( stderr, format, args );
va_end( args );
exit( 1 );
}
int circle_build( circle* c, point* p1, point* p2, point* p3 )
{
double x1sq = p1->x * p1->x;
double x2sq = p2->x * p2->x;
double x3sq = p3->x * p3->x;
double y1sq = p1->y * p1->y;
double y2sq = p2->y * p2->y;
double y3sq = p3->y * p3->y;
double t1 = x3sq - x2sq + y3sq - y2sq;
double t2 = x1sq - x3sq + y1sq - y3sq;
double t3 = x2sq - x1sq + y2sq - y1sq;
double D = ( p1->x * ( p2->y - p3->y ) + p2->x * ( p3->y - p1->y ) + p3->x * ( p1->y - p2->y ) ) * 2.0;
if ( D == 0.0 )
return 0;
c->x = ( p1->y * t1 + p2->y * t2 + p3->y * t3 ) / D;
c->y = -( p1->x * t1 + p2->x * t2 + p3->x * t3 ) / D;
c->r = hypot( c->x - p1->x, c->y - p1->y );
return 1;
}
// This procedure has taken it final shape after a number of tries. The problem
// was to have the calculated and stored radii being the same if (x,y) is
// exactly on the circle border (i.e. not to use FCPU extended precision in
// the radius calculation). This may have little effect in practice but was
// important in some tests when both input and output data were placed
// in rectangular grid nodes.
//
int circle_contains( circle* c, point* p )
{
return hypot( c->x - p->x, c->y - p->y ) <= c->r * ( 1.0 + EPSILON );
}
// Smoothes the input point array by averaging the input x,y and z values
// for each cell within virtual rectangular nx by ny grid. The corners of the
// grid are created from min and max values of the input array. It also frees
// the original array and returns results and new dimension via original
// data and size pointers.
//
// @param pn Pointer to number of points (input/output)
// @param ppoints Pointer to array of points (input/output) [*pn]
// @param nx Number of x nodes in decimation
// @param ny Number of y nodes in decimation
//
void points_thin( int* pn, point** ppoints, int nx, int ny )
{
int n = *pn;
point * points = *ppoints;
double xmin = DBL_MAX;
double xmax = -DBL_MAX;
double ymin = DBL_MAX;
double ymax = -DBL_MAX;
int nxy = nx * ny;
double * sumx = calloc( (size_t) nxy, sizeof ( double ) );
double * sumy = calloc( (size_t) nxy, sizeof ( double ) );
double * sumz = calloc( (size_t) nxy, sizeof ( double ) );
int * count = calloc( (size_t) nxy, sizeof ( int ) );
double stepx = 0.0;
double stepy = 0.0;
int nnew = 0;
point * pointsnew = NULL;
int i, j, ii;
if ( nn_verbose )
fprintf( stderr, "thinned: %d points -> ", *pn );
if ( nx < 1 || ny < 1 )
{
free( points );
*ppoints = NULL;
*pn = 0;
if ( nn_verbose )
fprintf( stderr, "0 points" );
free( sumx );
free( sumy );
free( sumz );
free( count );
return;
}
for ( ii = 0; ii < n; ++ii )
{
point* p = &points[ii];
if ( p->x < xmin )
xmin = p->x;
if ( p->x > xmax )
xmax = p->x;
if ( p->y < ymin )
ymin = p->y;
if ( p->y > ymax )
ymax = p->y;
}
stepx = ( nx > 1 ) ? ( xmax - xmin ) / nx : 0.0;
stepy = ( ny > 1 ) ? ( ymax - ymin ) / ny : 0.0;
for ( ii = 0; ii < n; ++ii )
{
point* p = &points[ii];
int index;
//
// Following is the portion of the code which really depends on the
// floating point particulars. Do not be surprised if different
// compilers/options give different results here.
//
i = ( nx == 1 ) ? 0 : (int) ( ( p->x - xmin ) / stepx );
j = ( ny == 1 ) ? 0 : (int) ( ( p->y - ymin ) / stepy );
if ( i == nx )
i--;
if ( j == ny )
j--;
index = i + j * nx;
sumx[index] += p->x;
sumy[index] += p->y;
sumz[index] += p->z;
count[index]++;
}
for ( j = 0; j < ny; ++j )
{
for ( i = 0; i < nx; ++i )
{
int index = i + j * nx;
if ( count[index] > 0 )
nnew++;
}
}
pointsnew = malloc( (size_t) nnew * sizeof ( point ) );
ii = 0;
for ( j = 0; j < ny; ++j )
{
for ( i = 0; i < nx; ++i )
{
int index = i + j * nx;
int nn = count[index];
if ( nn > 0 )
{
point* p = &pointsnew[ii];
p->x = sumx[index] / nn;
p->y = sumy[index] / nn;
p->z = sumz[index] / nn;
ii++;
}
}
}
if ( nn_verbose )
fprintf( stderr, "%d points\n", nnew );
free( sumx );
free( sumy );
free( sumz );
free( count );
free( points );
*ppoints = pointsnew;
*pn = nnew;
}
// Generates rectangular grid nx by ny using min and max x and y values from
// the input point array. Allocates space for the output point array, be sure
// to free it when necessary!
//
// @param n Number of points
// @param points Array of points [n]
// @param nx Number of x nodes
// @param ny Number of y nodes
// @param zoom Zoom coefficient
// @param nout Pointer to number of output points
// @param pout Pointer to array of output points [*nout]
//
void points_generate1( int nin, point pin[], int nx, int ny, double zoom, int* nout, point** pout )
{
double xmin = DBL_MAX;
double xmax = -DBL_MAX;
double ymin = DBL_MAX;
double ymax = -DBL_MAX;
double stepx, stepy;
double x0, xx, yy;
int i, j, ii;
if ( nx < 1 || ny < 1 )
{
*pout = NULL;
*nout = 0;
return;
}
for ( ii = 0; ii < nin; ++ii )
{
point* p = &pin[ii];
if ( p->x < xmin )
xmin = p->x;
if ( p->x > xmax )
xmax = p->x;
if ( p->y < ymin )
ymin = p->y;
if ( p->y > ymax )
ymax = p->y;
}
if ( isnan( zoom ) || zoom <= 0.0 )
zoom = 1.0;
if ( zoom != 1.0 )
{
double xdiff2 = ( xmax - xmin ) / 2.0;
double ydiff2 = ( ymax - ymin ) / 2.0;
double xav = ( xmax + xmin ) / 2.0;
double yav = ( ymax + ymin ) / 2.0;
xmin = xav - xdiff2 * zoom;
xmax = xav + xdiff2 * zoom;
ymin = yav - ydiff2 * zoom;
ymax = yav + ydiff2 * zoom;
}
*nout = nx * ny;
*pout = malloc( (size_t) ( *nout ) * sizeof ( point ) );
stepx = ( nx > 1 ) ? ( xmax - xmin ) / ( nx - 1 ) : 0.0;
stepy = ( ny > 1 ) ? ( ymax - ymin ) / ( ny - 1 ) : 0.0;
x0 = ( nx > 1 ) ? xmin : ( xmin + xmax ) / 2.0;
yy = ( ny > 1 ) ? ymin : ( ymin + ymax ) / 2.0;
ii = 0;
for ( j = 0; j < ny; ++j )
{
xx = x0;
for ( i = 0; i < nx; ++i )
{
point* p = &( *pout )[ii];
p->x = xx;
p->y = yy;
xx += stepx;
ii++;
}
yy += stepy;
}
}
// Generates rectangular grid nx by ny using specified min and max x and y
// values. Allocates space for the output point array, be sure to free it
// when necessary!
//
// @param xmin Min x value
// @param xmax Max x value
// @param ymin Min y value
// @param ymax Max y value
// @param nx Number of x nodes
// @param ny Number of y nodes
// @param nout Pointer to number of output points
// @param pout Pointer to array of output points [*nout]
//
void points_generate2( double xmin, double xmax, double ymin, double ymax, int nx, int ny, int* nout, point** pout )
{
double stepx, stepy;
double x0, xx, yy;
int i, j, ii;
if ( nx < 1 || ny < 1 )
{
*pout = NULL;
*nout = 0;
return;
}
*nout = nx * ny;
*pout = malloc( (size_t) ( *nout ) * sizeof ( point ) );
stepx = ( nx > 1 ) ? ( xmax - xmin ) / ( nx - 1 ) : 0.0;
stepy = ( ny > 1 ) ? ( ymax - ymin ) / ( ny - 1 ) : 0.0;
x0 = ( nx > 1 ) ? xmin : ( xmin + xmax ) / 2.0;
yy = ( ny > 1 ) ? ymin : ( ymin + ymax ) / 2.0;
ii = 0;
for ( j = 0; j < ny; ++j )
{
xx = x0;
for ( i = 0; i < nx; ++i )
{
point* p = &( *pout )[ii];
p->x = xx;
p->y = yy;
xx += stepx;
ii++;
}
yy += stepy;
}
}
static int str2double( char* token, double* value )
{
char* end = NULL;
if ( token == NULL )
{
*value = NaN;
return 0;
}
*value = strtod( token, &end );
if ( end == token )
{
*value = NaN;
return 0;
}
return 1;
}
#define NALLOCATED_START 1024
// Reads array of points from a columnar file.
//
// @param fname File name (can be "stdin" for standard input)
// @param dim Number of dimensions (must be 2 or 3)
// @param n Pointer to number of points (output)
// @param points Pointer to array of points [*n] (output) (to be freed)
//
void points_read( char* fname, int dim, int* n, point** points )
{
FILE * f = NULL;
int nallocated = NALLOCATED_START;
char buf[BUFSIZE];
char seps[] = " ,;\t";
char * token;
if ( dim < 2 || dim > 3 )
{
*n = 0;
*points = NULL;
return;
}
if ( fname == NULL )
f = stdin;
else
{
if ( strcmp( fname, "stdin" ) == 0 || strcmp( fname, "-" ) == 0 )
f = stdin;
else
{
f = fopen( fname, "r" );
if ( f == NULL )
nn_quit( "%s: %s\n", fname, strerror( errno ) );
}
}
*points = malloc( (size_t) nallocated * sizeof ( point ) );
*n = 0;
while ( fgets( buf, BUFSIZE, f ) != NULL )
{
point* p;
if ( *n == nallocated )
{
nallocated *= 2;
*points = realloc( *points, (size_t) nallocated * sizeof ( point ) );
}
p = &( *points )[*n];
if ( buf[0] == '#' )
continue;
if ( ( token = strtok( buf, seps ) ) == NULL )
continue;
if ( !str2double( token, &p->x ) )
continue;
if ( ( token = strtok( NULL, seps ) ) == NULL )
continue;
if ( !str2double( token, &p->y ) )
continue;
if ( dim == 2 )
p->z = NaN;
else
{
if ( ( token = strtok( NULL, seps ) ) == NULL )
continue;
if ( !str2double( token, &p->z ) )
continue;
}
( *n )++;
}
if ( *n == 0 )
{
free( *points );
*points = NULL;
}
else
*points = realloc( *points, (size_t) ( *n ) * sizeof ( point ) );
if ( f != stdin )
if ( fclose( f ) != 0 )
nn_quit( "%s: %s\n", fname, strerror( errno ) );
}
//* Scales Y coordinate so that the resulting set fits into square:
//** xmax - xmin = ymax - ymin
//*
//* @param n Number of points
//* @param points The points to scale
//* @return Y axis compression coefficient
//
double points_scaletosquare( int n, point* points )
{
double xmin, ymin, xmax, ymax;
double k;
int i;
if ( n <= 0 )
return NaN;
xmin = xmax = points[0].x;
ymin = ymax = points[0].y;
for ( i = 1; i < n; ++i )
{
point* p = &points[i];
if ( p->x < xmin )
xmin = p->x;
else if ( p->x > xmax )
xmax = p->x;
if ( p->y < ymin )
ymin = p->y;
else if ( p->y > ymax )
ymax = p->y;
}
if ( xmin == xmax || ymin == ymax )
return NaN;
else
k = ( ymax - ymin ) / ( xmax - xmin );
for ( i = 0; i < n; ++i )
points[i].y /= k;
return k;
}
//* Compresses Y domain by a given multiple.
//
// @param n Number of points
// @param points The points to scale
// @param Y axis compression coefficient as returned by points_scaletosquare()
//
void points_scale( int n, point* points, double k )
{
int i;
for ( i = 0; i < n; ++i )
points[i].y /= k;
}
|