1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
//--------------------------------------------------------------------------
//
// File: nnpi.c
//
// Created: 15/11/2002
//
// Author: Pavel Sakov
// CSIRO Marine Research
//
// Purpose: Code for:
// -- Natural Neighbours Point Interpolator
// -- Natural Neighbours Point Hashing Interpolator
//
// Description: `nnpi' -- "Natural Neighbours Point
// Interpolator" -- is a structure for conducting Natural
// Neighbours interpolation on a given data on a
// "point-to-point" basis. Because it involves weight
// calculation for each next output point, it is not
// particularly suitable for consequitive interpolations on
// the same set of observation points -- use
// `nnhpi' or `nnai'
// in these cases.
//
// `nnhpi' is a structure for
// conducting consequitive Natural Neighbours interpolations
// on a given spatial data set in a random sequence of points
// from a set of finite size, taking advantage of repeated
// interpolations in the same point. It allows to modify Z
// coordinate of data in between interpolations.
//
//
// Revisions: 01/04/2003 PS: modified nnpi_triangle_process(): for
// Sibson interpolation, if circle_build fails(), now a
// local copy of a point is moved slightly rather than the
// data point itself. The later approach have found leading
// to inconsistencies of the new point position with the
// earlier built triangulation.
//
//--------------------------------------------------------------------------
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <float.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "nn.h"
#include "delaunay.h"
#include "nan.h"
#include "hash.h"
struct nnpi
{
delaunay* d;
point * p;
double wmin;
//
// work variables
//
int nvertices;
int nallocated;
int * vertices; // vertex indices
double* weights;
int n; // number of points processed
};
int circle_build( circle* c, point* p0, point* p1, point* p2 );
int circle_contains( circle* c, point* p );
void delaunay_circles_find( delaunay* d, point* p, int* n, int** out );
int delaunay_xytoi( delaunay* d, point* p, int seed );
void nn_quit( const char* format, ... );
void nnpi_reset( nnpi* nn );
void nnpi_calculate_weights( nnpi* nn );
void nnpi_normalize_weights( nnpi* nn );
void nnpi_set_point( nnpi* nn, point* p );
int nnpi_get_nvertices( nnpi* nn );
int* nnpi_get_vertices( nnpi* nn );
double* nnpi_get_weights( nnpi* nn );
#define NSTART 10
#define NINC 10
#define EPS_SHIFT 1.0e-9
#define N_SEARCH_TURNON 20
#define BIGNUMBER 1.0e+100
#define min( x, y ) ( ( x ) < ( y ) ? ( x ) : ( y ) )
#define max( x, y ) ( ( x ) > ( y ) ? ( x ) : ( y ) )
// Creates Natural Neighbours point interpolator.
//
// @param d Delaunay triangulation
// @return Natural Neighbours interpolation
//
nnpi* nnpi_create( delaunay* d )
{
nnpi* nn = malloc( sizeof ( nnpi ) );
nn->d = d;
nn->wmin = -DBL_MAX;
nn->vertices = calloc( NSTART, sizeof ( int ) );
nn->weights = calloc( NSTART, sizeof ( double ) );
nn->nvertices = 0;
nn->nallocated = NSTART;
nn->p = NULL;
nn->n = 0;
return nn;
}
// Destroys Natural Neighbours point interpolator.
//
// @param nn Structure to be destroyed
//
void nnpi_destroy( nnpi* nn )
{
free( nn->weights );
free( nn->vertices );
free( nn );
}
void nnpi_reset( nnpi* nn )
{
nn->nvertices = 0;
nn->p = NULL;
memset( nn->d->flags, 0, (size_t) ( nn->d->ntriangles ) * sizeof ( int ) );
}
static void nnpi_add_weight( nnpi* nn, int vertex, double w )
{
int i;
//
// find whether the vertex is already in the list
//
for ( i = 0; i < nn->nvertices; ++i )
if ( nn->vertices[i] == vertex )
break;
if ( i == nn->nvertices ) // not in the list
{ //
// get more memory if necessary
//
if ( nn->nvertices == nn->nallocated )
{
nn->vertices = realloc( nn->vertices, (size_t) ( nn->nallocated + NINC ) * sizeof ( int ) );
nn->weights = realloc( nn->weights, (size_t) ( nn->nallocated + NINC ) * sizeof ( double ) );
nn->nallocated += NINC;
}
//
// add the vertex to the list
//
nn->vertices[i] = vertex;
nn->weights[i] = w;
nn->nvertices++;
}
else // in the list
{
if ( nn_rule == SIBSON )
nn->weights[i] += w;
else if ( w > nn->weights[i] )
nn->weights[i] = w;
}
}
static double triangle_scale_get( delaunay* d, triangle* t )
{
double x0 = d->points[t->vids[0]].x;
double x1 = d->points[t->vids[1]].x;
double x2 = d->points[t->vids[2]].x;
double y0 = d->points[t->vids[0]].y;
double y1 = d->points[t->vids[1]].y;
double y2 = d->points[t->vids[2]].y;
double xmin = min( min( x0, x1 ), x2 );
double xmax = max( max( x0, x1 ), x2 );
double ymin = min( min( y0, y1 ), y2 );
double ymax = max( max( y0, y1 ), y2 );
return xmax - xmin + ymax - ymin;
}
// This is a central procedure for the Natural Neighbours interpolation. It
// uses the Watson's algorithm for the required areas calculation and implies
// that the vertices of the delaunay triangulation are listed in uniform
// (clockwise or counterclockwise) order.
//
static void nnpi_triangle_process( nnpi* nn, point* p, int i )
{
delaunay* d = nn->d;
triangle* t = &d->triangles[i];
circle * c = &d->circles[i];
circle cs[3];
int j;
assert( circle_contains( c, p ) );
if ( nn_rule == SIBSON )
{
point pp;
pp.x = p->x;
pp.y = p->y;
//
// Sibson interpolation by using Watson's algorithm
//
do
{
for ( j = 0; j < 3; ++j )
{
int j1 = ( j + 1 ) % 3;
int j2 = ( j + 2 ) % 3;
int v1 = t->vids[j1];
int v2 = t->vids[j2];
if ( !circle_build( &cs[j], &d->points[v1], &d->points[v2], &pp ) )
{
double scale = triangle_scale_get( d, t );
if ( d->points[v1].y == d->points[v2].y )
pp.y += EPS_SHIFT * scale;
else
pp.x += EPS_SHIFT * scale;
break;
}
}
} while ( j != 3 );
for ( j = 0; j < 3; ++j )
{
int j1 = ( j + 1 ) % 3;
int j2 = ( j + 2 ) % 3;
double det = ( ( cs[j1].x - c->x ) * ( cs[j2].y - c->y ) - ( cs[j2].x - c->x ) * ( cs[j1].y - c->y ) );
nnpi_add_weight( nn, t->vids[j], det );
}
}
else if ( nn_rule == NON_SIBSONIAN )
{
double d1 = c->r - hypot( p->x - c->x, p->y - c->y );
for ( i = 0; i < 3; ++i )
{
int vid = t->vids[i];
point * pp = &d->points[vid];
double d2 = hypot( p->x - pp->x, p->y - pp->y );
if ( d2 == 0.0 )
nnpi_add_weight( nn, vid, BIGNUMBER );
else
nnpi_add_weight( nn, vid, d1 / d2 );
}
}
else
nn_quit( "unknown rule\n" );
}
void nnpi_calculate_weights( nnpi* nn )
{
point* p = nn->p;
int n = nn->d->ntriangles;
int i;
if ( n > N_SEARCH_TURNON )
{
int* tids;
delaunay_circles_find( nn->d, p, &n, &tids );
for ( i = 0; i < n; ++i )
nnpi_triangle_process( nn, p, tids[i] );
}
else
for ( i = 0; i < n; ++i )
if ( circle_contains( &nn->d->circles[i], p ) )
nnpi_triangle_process( nn, p, i );
}
void nnpi_normalize_weights( nnpi* nn )
{
int n = nn->nvertices;
double sum = 0.0;
int i;
for ( i = 0; i < n; ++i )
sum += nn->weights[i];
for ( i = 0; i < n; ++i )
nn->weights[i] /= sum;
}
// Finds Natural Neighbours-interpolated value for a point.
//
// @param nn NN interpolation
// @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
//
void nnpi_interpolate_point( nnpi* nn, point* p )
{
delaunay* d = nn->d;
int i;
nnpi_reset( nn );
nn->p = p;
nnpi_calculate_weights( nn );
nnpi_normalize_weights( nn );
if ( nn_verbose )
{
if ( nn_test_vertice == -1 )
{
if ( nn->n == 0 )
fprintf( stderr, "weights:\n" );
fprintf( stderr, " %d: {", nn->n );
for ( i = 0; i < nn->nvertices; ++i )
{
fprintf( stderr, "(%d,%.5g)", nn->vertices[i], nn->weights[i] );
if ( i < nn->nvertices - 1 )
fprintf( stderr, ", " );
}
fprintf( stderr, "}\n" );
}
else
{
double w = 0.0;
if ( nn->n == 0 )
fprintf( stderr, "weights for vertex %d:\n", nn_test_vertice );
for ( i = 0; i < nn->nvertices; ++i )
{
if ( nn->vertices[i] == nn_test_vertice )
{
w = nn->weights[i];
break;
}
}
fprintf( stderr, "%15.7g %15.7g %15.7g\n", p->x, p->y, w );
}
}
nn->n++;
if ( nn->nvertices == 0 )
{
p->z = NaN;
return;
}
p->z = 0.0;
for ( i = 0; i < nn->nvertices; ++i )
{
double weight = nn->weights[i];
if ( weight < nn->wmin )
{
p->z = NaN;
return;
}
p->z += d->points[nn->vertices[i]].z * weight;
}
}
// Performs Natural Neighbours interpolation for an array of points.
//
// @param nin Number of input points
// @param pin Array of input points [pin]
// @param wmin Minimal allowed weight
// @param nout Number of output points
// @param pout Array of output points [nout]
//
void nnpi_interpolate_points( int nin, point pin[], double wmin, int nout, point pout[] )
{
delaunay* d = delaunay_build( nin, pin, 0, NULL, 0, NULL );
nnpi * nn = nnpi_create( d );
int seed = 0;
int i;
nn->wmin = wmin;
if ( nn_verbose )
{
fprintf( stderr, "xytoi:\n" );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
fprintf( stderr, "(%.7g,%.7g) -> %d\n", p->x, p->y, delaunay_xytoi( d, p, seed ) );
}
}
for ( i = 0; i < nout; ++i )
nnpi_interpolate_point( nn, &pout[i] );
if ( nn_verbose )
{
fprintf( stderr, "output:\n" );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
fprintf( stderr, " %d:%15.7g %15.7g %15.7g\n", i, p->x, p->y, p->z );
}
}
nnpi_destroy( nn );
delaunay_destroy( d );
}
// Sets minimal allowed weight for Natural Neighbours interpolation.
// @param nn Natural Neighbours point interpolator
// @param wmin Minimal allowed weight
//
void nnpi_setwmin( nnpi* nn, double wmin )
{
nn->wmin = wmin;
}
// Sets point to interpolate in.
// @param nn Natural Neighbours point interpolator
// @param p Point to interpolate in
//
void nnpi_set_point( nnpi* nn, point* p )
{
nn->p = p;
}
// Gets number of data points involved in current interpolation.
// @return Number of data points involved in current interpolation
//
int nnpi_get_nvertices( nnpi* nn )
{
return nn->nvertices;
}
// Gets indices of data points involved in current interpolation.
// @return indices of data points involved in current interpolation
//
int* nnpi_get_vertices( nnpi* nn )
{
return nn->vertices;
}
// Gets weights of data points involved in current interpolation.
// @return weights of data points involved in current interpolation
//
double* nnpi_get_weights( nnpi* nn )
{
return nn->weights;
}
//
// nnhpi
//
struct nnhpi
{
nnpi * nnpi;
hashtable* ht_data;
hashtable* ht_weights;
int n; // number of points processed
};
typedef struct
{
int nvertices;
int * vertices; // vertex indices [nvertices]
double* weights; // vertex weights [nvertices]
} nn_weights;
// Creates Natural Neighbours hashing point interpolator.
//
// @param d Delaunay triangulation
// @param size Hash table size (should be of order of number of output points)
// @return Natural Neighbours interpolation
//
nnhpi* nnhpi_create( delaunay* d, int size )
{
nnhpi* nn = malloc( sizeof ( nnhpi ) );
int i;
nn->nnpi = nnpi_create( d );
nn->ht_data = ht_create_d2( d->npoints );
nn->ht_weights = ht_create_d2( size );
nn->n = 0;
for ( i = 0; i < d->npoints; ++i )
ht_insert( nn->ht_data, &d->points[i], &d->points[i] );
return nn;
}
static void free_nn_weights( void* data )
{
nn_weights* weights = (nn_weights *) data;
free( weights->vertices );
free( weights->weights );
free( weights );
}
// Destroys Natural Neighbours hashing point interpolation.
//
// @param nn Structure to be destroyed
//
void nnhpi_destroy( nnhpi* nn )
{
ht_destroy( nn->ht_data );
ht_process( nn->ht_weights, free_nn_weights );
ht_destroy( nn->ht_weights );
nnpi_destroy( nn->nnpi );
}
// Finds Natural Neighbours-interpolated value in a point.
//
// @param nnhp NN point hashing interpolator
// @param p Point to be interpolated (p->x, p->y -- input; p->z -- output)
//
void nnhpi_interpolate( nnhpi* nnhp, point* p )
{
nnpi * nnp = nnhp->nnpi;
delaunay * d = nnp->d;
hashtable * ht_weights = nnhp->ht_weights;
nn_weights* weights;
int i;
if ( ht_find( ht_weights, p ) != NULL )
{
weights = ht_find( ht_weights, p );
if ( nn_verbose )
fprintf( stderr, " <hashtable>\n" );
}
else
{
nnpi_reset( nnp );
nnp->p = p;
nnpi_calculate_weights( nnp );
nnpi_normalize_weights( nnp );
weights = malloc( sizeof ( nn_weights ) );
weights->vertices = malloc( sizeof ( int ) * (size_t) ( nnp->nvertices ) );
weights->weights = malloc( sizeof ( double ) * (size_t) ( nnp->nvertices ) );
weights->nvertices = nnp->nvertices;
for ( i = 0; i < nnp->nvertices; ++i )
{
weights->vertices[i] = nnp->vertices[i];
weights->weights[i] = nnp->weights[i];
}
ht_insert( ht_weights, p, weights );
if ( nn_verbose )
{
if ( nn_test_vertice == -1 )
{
if ( nnp->n == 0 )
fprintf( stderr, "weights:\n" );
fprintf( stderr, " %d: {", nnp->n );
for ( i = 0; i < nnp->nvertices; ++i )
{
fprintf( stderr, "(%d,%.5g)", nnp->vertices[i], nnp->weights[i] );
if ( i < nnp->nvertices - 1 )
fprintf( stderr, ", " );
}
fprintf( stderr, "}\n" );
}
else
{
double w = 0.0;
if ( nnp->n == 0 )
fprintf( stderr, "weights for vertex %d:\n", nn_test_vertice );
for ( i = 0; i < nnp->nvertices; ++i )
{
if ( nnp->vertices[i] == nn_test_vertice )
{
w = nnp->weights[i];
break;
}
}
fprintf( stderr, "%15.7g %15.7g %15.7g\n", p->x, p->y, w );
}
}
nnp->n++;
}
nnhp->n++;
if ( weights->nvertices == 0 )
{
p->z = NaN;
return;
}
p->z = 0.0;
for ( i = 0; i < weights->nvertices; ++i )
{
if ( weights->weights[i] < nnp->wmin )
{
p->z = NaN;
return;
}
p->z += d->points[weights->vertices[i]].z * weights->weights[i];
}
}
// Modifies interpolated data.
// Finds point* pd in the underlying Delaunay triangulation such that
// pd->x = p->x and pd->y = p->y, and copies p->z to pd->z. Exits with error
// if the point is not found.
//
// @param nnhp Natural Neighbours hashing point interpolator
// @param p New data
//
void nnhpi_modify_data( nnhpi* nnhp, point* p )
{
point* orig = ht_find( nnhp->ht_data, p );
assert( orig != NULL );
orig->z = p->z;
}
// Sets minimal allowed weight for Natural Neighbours interpolation.
// @param nn Natural Neighbours point hashing interpolator
// @param wmin Minimal allowed weight
//
void nnhpi_setwmin( nnhpi* nn, double wmin )
{
nn->nnpi->wmin = wmin;
}
#if defined ( NNPHI_TEST )
#include <sys/time.h>
#define NPOINTSIN 10000
#define NMIN 10
#define NX 101
#define NXMIN 1
#define SQ( x ) ( ( x ) * ( x ) )
static double franke( double x, double y )
{
x *= 9.0;
y *= 9.0;
return 0.75 * exp( ( -SQ( x - 2.0 ) - SQ( y - 2.0 ) ) / 4.0 )
+ 0.75 * exp( -SQ( x - 2.0 ) / 49.0 - ( y - 2.0 ) / 10.0 )
+ 0.5 * exp( ( -SQ( x - 7.0 ) - SQ( y - 3.0 ) ) / 4.0 )
- 0.2 * exp( -SQ( x - 4.0 ) - SQ( y - 7.0 ) );
}
static void usage()
{
printf( "Usage: nnhpi_test [-a] [-n <nin> <nxout>] [-v|-V]\n" );
printf( "Options:\n" );
printf( " -a -- use non-Sibsonian interpolation rule\n" );
printf( " -n <nin> <nout>:\n" );
printf( " <nin> -- number of input points (default = 10000)\n" );
printf( " <nout> -- number of output points per side (default = 64)\n" );
printf( " -v -- verbose\n" );
printf( " -V -- very verbose\n" );
exit( 0 );
}
int main( int argc, char* argv[] )
{
int nin = NPOINTSIN;
int nx = NX;
int nout = 0;
point * pin = NULL;
delaunay * d = NULL;
point * pout = NULL;
nnhpi * nn = NULL;
int cpi = -1; // control point index
struct timeval tv0, tv1;
struct timezone tz;
int i;
i = 1;
while ( i < argc )
{
switch ( argv[i][1] )
{
case 'a':
i++;
nn_rule = NON_SIBSONIAN;
break;
case 'n':
i++;
if ( i >= argc )
nn_quit( "no number of data points found after -n\n" );
nin = atoi( argv[i] );
i++;
if ( i >= argc )
nn_quit( "no number of ouput points per side found after -i\n" );
nx = atoi( argv[i] );
i++;
break;
case 'v':
i++;
nn_verbose = 1;
break;
case 'V':
i++;
nn_verbose = 2;
break;
default:
usage();
break;
}
}
if ( nin < NMIN )
nin = NMIN;
if ( nx < NXMIN )
nx = NXMIN;
printf( "\nTest of Natural Neighbours hashing point interpolator:\n\n" );
printf( " %d data points\n", nin );
printf( " %d output points\n", nx * nx );
//
// generate data
//
printf( " generating data:\n" );
fflush( stdout );
pin = malloc( nin * sizeof ( point ) );
for ( i = 0; i < nin; ++i )
{
point* p = &pin[i];
p->x = (double) random() / RAND_MAX;
p->y = (double) random() / RAND_MAX;
p->z = franke( p->x, p->y );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
//
// triangulate
//
printf( " triangulating:\n" );
fflush( stdout );
d = delaunay_build( nin, pin, 0, NULL, 0, NULL );
//
// generate output points
//
points_generate2( -0.1, 1.1, -0.1, 1.1, nx, nx, &nout, &pout );
cpi = ( nx / 2 ) * ( nx + 1 );
gettimeofday( &tv0, &tz );
//
// create interpolator
//
printf( " creating interpolator:\n" );
fflush( stdout );
nn = nnhpi_create( d, nout );
fflush( stdout );
gettimeofday( &tv1, &tz );
{
long dt = 1000000 * ( tv1.tv_sec - tv0.tv_sec ) + tv1.tv_usec - tv0.tv_usec;
printf( " interpolator creation time = %ld us (%.2f us / point)\n", dt, (double) dt / nout );
}
//
// interpolate
//
printf( " interpolating:\n" );
fflush( stdout );
gettimeofday( &tv1, &tz );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
nnhpi_interpolate( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
fflush( stdout );
gettimeofday( &tv0, &tz );
{
long dt = 1000000.0 * ( tv0.tv_sec - tv1.tv_sec ) + tv0.tv_usec - tv1.tv_usec;
printf( " interpolation time = %ld us (%.2f us / point)\n", dt, (double) dt / nout );
}
if ( !nn_verbose )
printf( " control point: (%f, %f, %f) (expected z = %f)\n", pout[cpi].x, pout[cpi].y, pout[cpi].z, franke( pout[cpi].x, pout[cpi].y ) );
printf( " interpolating one more time:\n" );
fflush( stdout );
gettimeofday( &tv0, &tz );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
nnhpi_interpolate( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
fflush( stdout );
gettimeofday( &tv1, &tz );
{
long dt = 1000000.0 * ( tv1.tv_sec - tv0.tv_sec ) + tv1.tv_usec - tv0.tv_usec;
printf( " interpolation time = %ld us (%.2f us / point)\n", dt, (double) dt / nout );
}
if ( !nn_verbose )
printf( " control point: (%f, %f, %f) (expected z = %f)\n", pout[cpi].x, pout[cpi].y, pout[cpi].z, franke( pout[cpi].x, pout[cpi].y ) );
printf( " entering new data:\n" );
fflush( stdout );
for ( i = 0; i < nin; ++i )
{
point* p = &pin[i];
p->z = p->x * p->x - p->y * p->y;
nnhpi_modify_data( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
printf( " interpolating:\n" );
fflush( stdout );
gettimeofday( &tv1, &tz );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
nnhpi_interpolate( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
fflush( stdout );
gettimeofday( &tv0, &tz );
{
long dt = 1000000.0 * ( tv0.tv_sec - tv1.tv_sec ) + tv0.tv_usec - tv1.tv_usec;
printf( " interpolation time = %ld us (%.2f us / point)\n", dt, (double) dt / nout );
}
if ( !nn_verbose )
printf( " control point: (%f, %f, %f) (expected z = %f)\n", pout[cpi].x, pout[cpi].y, pout[cpi].z, pout[cpi].x * pout[cpi].x - pout[cpi].y * pout[cpi].y );
printf( " restoring data:\n" );
fflush( stdout );
for ( i = 0; i < nin; ++i )
{
point* p = &pin[i];
p->z = franke( p->x, p->y );
nnhpi_modify_data( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
printf( " interpolating:\n" );
fflush( stdout );
gettimeofday( &tv0, &tz );
for ( i = 0; i < nout; ++i )
{
point* p = &pout[i];
nnhpi_interpolate( nn, p );
if ( nn_verbose )
printf( " (%f, %f, %f)\n", p->x, p->y, p->z );
}
fflush( stdout );
gettimeofday( &tv1, &tz );
{
long dt = 1000000.0 * ( tv1.tv_sec - tv0.tv_sec ) + tv1.tv_usec - tv0.tv_usec;
printf( " interpolation time = %ld us (%.2f us / point)\n", dt, (double) dt / nout );
}
if ( !nn_verbose )
printf( " control point: (%f, %f, %f) (expected z = %f)\n", pout[cpi].x, pout[cpi].y, pout[cpi].z, franke( pout[cpi].x, pout[cpi].y ) );
printf( " hashtable stats:\n" );
fflush( stdout );
{
hashtable* ht = nn->ht_data;
printf( " input points: %d entries, %d table elements, %d filled elements\n", ht->n, ht->size, ht->nhash );
ht = nn->ht_weights;
printf( " weights: %d entries, %d table elements, %d filled elements\n", ht->n, ht->size, ht->nhash );
}
printf( "\n" );
nnhpi_destroy( nn );
free( pout );
delaunay_destroy( d );
free( pin );
return 0;
}
#endif
|