1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
// Maurice LeBrun
// IFS, University of Texas
// Feb 15, 1995
//
// Test program for illustrating possible Tek GIN anomalies. In
// particular, for problems with GIN reports encountered in VLT (Tek
// 4107 emulator for the Amiga). May not work right with other Tek
// emulators.
//
// To compile: "$CC foo.c -o foo", where $CC is an ANSI-C compiler.
//
// Usage:
//
// % foo [x0 [y0]]
//
// To reproduce problem:
// Run program, then turn on graphic crosshair with XY and position over
// the intersection of the drawn lines. Experiment with different
// crosshair locations, entered via the command line. Invariably,
// the reported position is systematically <= than the drawn one,
// sometimes by as much as 2 pixels.
//
// Note: this anomaly has important consequences when doing graphic
// input, because the reported world coordinates are then
// systematically off.
//
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
// Static function prototypes
void plD_init_vlt( void );
void plD_line_tek( short, short, short, short );
void plD_eop_tek( void );
void plD_bop_tek( void );
void plD_tidy_tek( void );
static void WaitForPage( void );
static void tek_text( void );
static void tek_graph( void );
static void encode_int( char *c, int i );
static void encode_vector( char *c, int x, int y );
static void tek_vector( int x, int y );
// Graphics control characters.
#define RING_BELL "\007" // ^G = 7
#define CLEAR_VIEW "\033\f" // clear the view = ESC FF
#define ALPHA_MODE "\037" // Enter Alpha mode: US
#define VECTOR_MODE "\035" // Enter Vector mode: GS
#define GIN_MODE "\033\032" // Enter GIN mode: ESC SUB
#define BYPASS_MODE "\033\030" // Enter Bypass mode: ESC CAN
#define XTERM_VTMODE "\033\003" // End xterm-Tek mode: ESC ETX
#define CANCEL "\033KC" // Cancel
//--------------------------------------------------------------------------
// main
//
// Generates simple test case.
//--------------------------------------------------------------------------
int
main( int argc, char *argv[] )
{
short x0 = 300, y0 = 300, l = 100;
short x1, x2, y1, y2;
// Optional x0, y0 specification by the command line
if ( argc > 1 )
x0 = atoi( argv[1] );
if ( argc > 2 )
y0 = atoi( argv[2] );
plD_init_vlt();
// Draw boundary
plD_line_tek( 0, 0, 1023, 0 );
plD_line_tek( 1023, 0, 1023, 779 );
plD_line_tek( 1023, 779, 0, 779 );
plD_line_tek( 0, 779, 0, 0 );
// Draw crosshairs centered around (x0, y0) of length 2l
x1 = x0 - l, x2 = x0 + l;
y1 = y0 - l, y2 = y0 + l;
plD_line_tek( x1, y0, x2, y0 );
plD_line_tek( x0, y1, x0, y2 );
plD_eop_tek();
plD_tidy_tek();
exit( 0 );
}
//--------------------------------------------------------------------------
// plD_init_vlt() VLT emulator (Amiga)
//--------------------------------------------------------------------------
void
plD_init_vlt( void )
{
tek_graph();
fprintf( stdout, VECTOR_MODE ); // Enter vector mode
fprintf( stdout, CLEAR_VIEW ); // erase and home
}
//--------------------------------------------------------------------------
// plD_line_tek()
//
// Draw a line from (x1,y1) to (x2,y2).
//--------------------------------------------------------------------------
void
plD_line_tek( short x1, short y1, short x2, short y2 )
{
fprintf( stdout, VECTOR_MODE );
tek_vector( x1, y1 );
tek_vector( x2, y2 );
}
//--------------------------------------------------------------------------
// plD_eop_tek()
//
// End of page. User must hit a <CR> to continue (terminal output).
//--------------------------------------------------------------------------
void
plD_eop_tek( void )
{
WaitForPage();
fprintf( stdout, CLEAR_VIEW ); // erase and home
}
//--------------------------------------------------------------------------
// plD_tidy_tek()
//
// Close graphics file or otherwise clean up.
//--------------------------------------------------------------------------
void
plD_tidy_tek( void )
{
tek_text();
}
//--------------------------------------------------------------------------
// tek_text()
//--------------------------------------------------------------------------
static void
tek_text( void )
{
printf( "\033[?38l" ); // vt100 screen
}
//--------------------------------------------------------------------------
// tek_graph()
//--------------------------------------------------------------------------
static void
tek_graph( void )
{
printf( "\033[?38h" ); // switch to tek screen
}
//--------------------------------------------------------------------------
// encode_int()
//
// Encodes a single int into standard tek integer format, storing into a
// NULL-terminated character string (must be length 4 or greater). This
// scheme does not work for negative integers less than 15.
//--------------------------------------------------------------------------
static void
encode_int( char *c, int i )
{
int negative = 0;
if ( i > 0 )
{
if ( i & 0x7C00 ) // are any of bits 10-14 set?
*c++ = ( ( i >> 10 ) & 0x1F ) | 0x40;
if ( i & 0x03F0 ) // are any of bits 4-9 set?
*c++ = ( ( i >> 4 ) & 0x3F ) | 0x40;
}
else
{
i = -i;
negative = 1;
}
if ( i & 0x000F ) // are any of bits 0-3 set?
*c = ( i & 0x0F ) | 0x20;
else // if not, put in a space
*c = 0x20;
if ( !negative ) // if positive, set sign bit
*c |= 0x10;
c++; *c = '\0'; // NULL-terminate
return;
}
//--------------------------------------------------------------------------
// encode_vector()
//
// Encodes an xy vector (2 ints) into standard tek vector format, storing
// into a NULL-terminated character string of length 5. Note that the y
// coordinate always comes first.
//--------------------------------------------------------------------------
static void
encode_vector( char *c, int x, int y )
{
c[0] = ( y >> 5 ) + 0x20; // hy
c[1] = ( y & 0x1f ) + 0x60; // ly
c[2] = ( x >> 5 ) + 0x20; // hx
c[3] = ( x & 0x1f ) + 0x40; // lx
c[4] = '\0'; // NULL
}
//--------------------------------------------------------------------------
// tek_vector()
//
// Issues a vector draw command, assuming we are in vector plot mode. XY
// coordinates are encoded according to the standard xy encoding scheme.
//--------------------------------------------------------------------------
static void
tek_vector( int x, int y )
{
char c[5];
c[0] = ( y >> 5 ) + 0x20; // hy
c[1] = ( y & 0x1f ) + 0x60; // ly
c[2] = ( x >> 5 ) + 0x20; // hx
c[3] = ( x & 0x1f ) + 0x40; // lx
c[4] = '\0'; // NULL
fprintf( stdout, "%s", c );
}
//--------------------------------------------------------------------------
// WaitForPage()
//
// This routine waits for the user to advance the plot, while handling
// all other events.
//--------------------------------------------------------------------------
static void
WaitForPage( void )
{
printf( ALPHA_MODE ); // Switch to alpha mode (necessary)
printf( RING_BELL ); // and ring bell
printf( VECTOR_MODE ); // Switch out of alpha mode
fflush( stdout );
while ( !getchar() )
;
}
|