1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
-- 3-d plot demo.
-- Copyright (C) 2008-2016 Jerry Bauck
-- This file is part of PLplot.
-- PLplot is free software; you can redistribute it and/or modify
-- it under the terms of the GNU Library General Public License as published
-- by the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
-- PLplot is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU Library General Public License for more details.
-- You should have received a copy of the GNU Library General Public License
-- along with PLplot; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
with
Ada.Strings.Unbounded,
Ada.Numerics,
Ada.Numerics.Long_Elementary_Functions,
PLplot_Auxiliary,
PLplot_Standard;
use
Ada.Strings.Unbounded,
Ada.Numerics,
Ada.Numerics.Long_Elementary_Functions,
PLplot_Auxiliary,
PLplot_Standard;
procedure xstandard08a is
-- These values must be odd, for the middle
-- of the index range to be an integer, and thus
-- to correspond to the exact floating point centre
-- of the sombrero.
XPTS : Integer := 35;
YPTS : Integer := 45;
x : Real_Vector(0 .. XPTS - 1);
y : Real_Vector(0 .. YPTS - 1);
z : Real_Matrix(0 .. XPTS - 1, 0 .. YPTS - 1);
z_row_major : Real_Vector(0 .. XPTS * YPTS - 1); -- Guess at the actual dimensions since
z_col_major : Real_Vector(0 .. XPTS * YPTS - 1); -- C doesn't give a clue.
dx : Long_Float := 2.0 / Long_Float(XPTS - 1);
dy : Long_Float := 2.0 / Long_Float(YPTS - 1);
xx, yy, r : Long_Float;
zmin, zmax, step : Long_Float;
LEVELS : Integer := 10;
clevel: Real_Vector(0 .. LEVELS - 1);
nlevel : Integer := LEVELS;
indexxmin : Integer := 0;
indexxmax : Integer := XPTS;
indexymin : Integer_Array_1D(0 .. XPTS - 1);
indexymax : Integer_Array_1D(0 .. XPTS - 1);
zlimited : Real_Matrix(0 .. XPTS - 1, 0 .. YPTS - 1);
-- Parameters of ellipse (in x, y index coordinates) that limits the data.
-- x0, y0 correspond to the exact floating point centre of the index range.
x0 : Long_Float := 0.5 * Long_Float(XPTS - 1);
a : Long_Float := 0.9 * x0;
y0 : Long_Float := 0.5 * Long_Float(YPTS - 1);
b : Long_Float := 0.7 * y0;
square_root : Long_Float;
sombrero : Boolean := True; -- Edit this to choose sombrero or Rosenbrock function.
rosen : Boolean := not sombrero; -- Toggle Rosenbrock according to sombrero.
alt : Real_Vector(0 .. 1) := (60.0, 40.0);
az : Real_Vector(0 .. 1) := (30.0, -30.0);
title : array(0 .. 1) of Unbounded_String :=
(TUB("#frPLplot Example 8 - Alt=60, Az=30"),
TUB("#frPLplot Example 8 - Alt=40, Az=-30"));
------------------------------------------------------------------------------
-- cmap1_init1
-- Initializes color map 1 in HLS space.
-- Basic grayscale variation from half-dark (which makes more interesting
-- looking plot compared to dark) to light.
-- An interesting variation on this:
-- s[1] = 1.0
----------------------------------------------------------------------------
procedure cmap1_init(gray : Boolean) is
i, h, l, s : Real_Vector(0 .. 1);
begin
i(0) := 0.0; -- left boundary
i(1) := 1.0; -- right boundary
if gray then
h(0) := 0.0; -- hue -- low: red (arbitrary if s=0)
h(1) := 0.0; -- hue -- high: red (arbitrary if s=0)
l(0) := 0.5; -- lightness -- low: half-dark
l(1) := 1.0; -- lightness -- high: light
s(0) := 0.0; -- minimum saturation
s(1) := 0.0; -- minimum saturation
else
h(0) := 240.0; -- blue -> green -> yellow ->
h(1) := 0.0; -- -> red
l(0) := 0.6;
l(1) := 0.6;
s(0) := 0.8;
s(1) := 0.8;
end if;
Set_Number_Of_Colors_In_Color_Map_1(256);
Set_Color_Map_1_Piecewise(HLS, i, h, l, s, Alt_Hue_Path_None);
end cmap1_init;
begin
-- Parse and process command line arguments
Parse_Command_Line_Arguments(Parse_Full);
-- Chose sombrero or rosen in declarations, above.
-- Initialize plplot
Initialize_PLplot;
for i in x'range loop
-- x(i) := Long_Float(i - XPTS / 2) / Long_Float(XPTS / 2);
x(i) := -1.0 + Long_Float(i) * dx;
if rosen then
x(i) := x(i) * 1.5;
end if;
end loop;
for j in y'range loop
-- y(i) := Long_Float(i - YPTS / 2) / Long_Float(YPTS / 2);
y(j) := -1.0 + Long_Float(j) * dy;
if rosen then
y(j) := y(j) + 0.5;
end if;
end loop;
for i in x'range loop
xx := x(i);
for j in y'range loop
yy := y(j);
if rosen then
z(i, j) := (1.0 - xx) * (1.0 - xx) + 100.0 * (yy - (xx * xx)) * (yy - (xx * xx));
-- The log argument might be zero for just the right grid.
if z(i, j) > 0.0 then
z(i, j) := log(z(i, j));
else
z(i, j) := -5.0; -- -MAXFLOAT would mess-up up the scale
end if;
else -- Sombrero
r := sqrt(xx * xx + yy * yy);
z(i, j) := exp(-r * r) * cos(2.0 * pi * r);
end if;
z_row_major(i * YPTS + j) := z(i, j);
z_col_major(i + XPTS * j) := z(i, j);
end loop; -- j
end loop; -- i
for i in indexxmin .. indexxmax - 1 loop
square_root := sqrt( 1.0 - Long_Float'Min(1.0, ((Long_Float(i) - x0) / a)**2));
-- Add 0.5 to find nearest integer and therefore preserve symmetry
-- with regard to lower and upper bound of y range.
-- Ada note: Trunc() is in plplot_auxiliary.adb.
indexymin(i) := Integer'Max(0, Trunc(0.5 + y0 - b * square_root ));
-- indexymax calculated with the convention that it is 1
-- greater than highest valid index.
indexymax(i) := Integer'Min(YPTS, 1 + Trunc(0.5 + y0 + b * square_root));
for j in indexymin(i) .. indexymax(i) - 1 loop
zlimited(i, j) := z(i, j);
end loop;
end loop;
zmin := Matrix_Min(z);
zmax := Matrix_Max(z);
step := (zmax - zmin) / Long_Float(nlevel + 1);
for i in clevel'range loop
clevel(i) := zmin + step + step * Long_Float(i);
end loop;
Set_Light_Source(1.0, 1.0, 1.0);
for k in alt'range loop
for ifshade in 0 .. 4 loop
Advance_To_Subpage(Next_Subpage);
Set_Viewport_Normalized(0.0, 1.0, 0.0, 0.9);
Set_Viewport_World(-1.0, 1.0, -0.9, 1.1);
Set_Pen_Color(Green);
Write_Text_Viewport("t", 1.0, 0.5, 0.5, To_String(title(k)));
Set_Pen_Color(Red);
if rosen then
Set_Up_3D(1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt(k), az(k));
else
Set_Up_3D(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt(k), az(k));
end if;
Box_Around_Viewport_3D("bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0);
Set_Pen_Color(Yellow);
if ifshade = 0 then -- diffuse light surface plot
cmap1_init(True);
Shaded_Surface_3D(x, y, z, 0, clevel); -- clevel is not used here
elsif ifshade = 1 then -- magnitude colored plot
cmap1_init(False);
Shaded_Surface_3D(x, y, z, MAG_COLOR, clevel);
elsif ifshade = 2 then -- magnitude colored plot with faceted squares
cmap1_init(False);
Shaded_Surface_3D(x, y, z, MAG_COLOR + FACETED, clevel);
elsif ifshade = 3 then -- magnitude colored plot with contours
cmap1_init(False);
Shaded_Surface_3D(x, y, z, MAG_COLOR + SURF_CONT + BASE_CONT, clevel);
else -- magnitude colored plot with contours and index limits
cmap1_init(False);
Shaded_Surface_3D_Non_Rectangular(x, y, zlimited, MAG_COLOR + SURF_CONT + BASE_CONT,
clevel, indexxmin, indexxmax, indexymin, indexymax );
end if;
end loop; -- ifshade
end loop; -- k
End_PLplot;
end xstandard08a;
|