1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
-- Grid data demo
-- Copyright (C) 2007 Jerry Bauck
-- This file is part of PLplot.
-- PLplot is free software; you can redistribute it and/or modify
-- it under the terms of the GNU Library General Public License as published
-- by the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
-- PLplot is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU Library General Public License for more details.
-- You should have received a copy of the GNU Library General Public License
-- along with PLplot; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
-- Ada note: This example originally used Ada's random number generator, but in
-- order to make Postscript results that are identical to the C version, a
-- PLplot-specific random number generator was substituted. The original Ada
-- generator lines are left in as comments for reference.
with
Ada.Numerics,
Ada.Numerics.Long_Elementary_Functions,
-- Ada.Numerics.Float_Random,
Ada.Strings,
Ada.Strings.Fixed,
Ada.Calendar,
System,
PLplot_Auxiliary,
PLplot_Standard;
use
Ada.Numerics,
Ada.Numerics.Long_Elementary_Functions,
-- Ada.Numerics.Float_Random,
Ada.Strings,
Ada.Strings.Fixed,
Ada.Calendar,
PLplot_Auxiliary,
PLplot_Standard;
procedure xstandard21a is
pts : Integer := 500;
xp : Integer := 25;
yp : Integer := 20;
nl : Integer := 16;
knn_order : Integer := 20;
threshold : Long_Float := 1.001;
wmin : Long_Float := -1.0e3;
randn, rosen : Integer := 0;
xm, xMM, ym, yMM : Long_Float;
zmin, zmax, lzm, lzMM : Long_Float;
dist, d : Long_Float;
x, y, z : Real_Vector(0 .. pts - 1);
clev : Real_Vector(0 .. nl - 1);
xg : Real_Vector(0 .. xp - 1);
yg : Real_Vector(0 .. yp - 1);
zg : Real_Matrix(0 .. xp - 1, 0 .. yp - 1);
opt : Real_Vector(0 .. 5) := (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
-- Random_Generator : Generator; -- From Ada.Numerics.Float_Random
function title(which : Integer) return String is
begin
if which = 0 then return "Cubic Spline Approximation"; end if;
if which = 1 then return "Delaunay Linear Interpolation"; end if;
if which = 2 then return "Natural Neighbors Interpolation"; end if;
if which = 3 then return "KNN Inv. Distance Weighted"; end if;
if which = 4 then return "3NN Linear Interpolation"; end if;
if which = 5 then return "4NN Around Inv. Dist. Weighted"; end if;
return "oops";
end title;
procedure cmap1_init is
i, h, l, s : Real_Vector(0 .. 1);
begin
i(0) := 0.0; -- left boundary
i(1) := 1.0; -- right boundary
h(0) := 240.0; -- blue -> green -> yellow -> red
h(1) := 0.0;
l(0) := 0.6;
l(1) := 0.6;
s(0) := 0.8;
s(1) := 0.8;
Set_Number_Of_Colors_In_Color_Map_1(256);
Set_Color_Map_1_Piecewise(HLS, i, h, l, s, Alt_Hue_Path_None);
end cmap1_init;
procedure create_grid(x, y : out Real_Vector) is
begin
for i in x'range loop
x(i) := xm + (xMM - xm) * Long_Float(i) / (Long_Float(x'length) - 1.0);
end loop;
for i in y'range loop
y(i) := ym + (yMM - ym) * Long_Float(i) / (Long_Float(y'length) - 1.0);
end loop;
end create_grid;
procedure create_data(x, y, z : out Real_Vector) is
r, xt, yt : Long_Float;
begin
for i in x'range loop
-- xt := Long_Float(Random(Random_Generator));
-- yt := Long_Float(Random(Random_Generator));
xt := (xMM - xm) * Random_Number; -- Use the PLplot random number generator
yt := (yMM - ym) * Random_Number; -- to make the same plot as C example 21.
if randn = 0 then
x(i) := xt + xm;
y(i) := yt + ym;
else -- std=1, meaning that many points are outside the plot range
x(i) := sqrt(-2.0 *log(xt)) * cos(2.0 * pi * yt) + xm;
x(i) := sqrt(-2.0 *log(xt)) * sin(2.0 * pi * yt) + ym;
end if;
if rosen = 0 then
r := sqrt((x(i)) * (x(i)) + (y(i)) * (y(i)));
z(i) := exp(-r * r) * cos(2.0 * pi * r);
else
z(i) := log((1.0 - x(i))*(1.0 - x(i)) + 100.0 * (y(i) - x(i)*x(i))*(y(i) - x(i)*x(i)));
end if;
end loop;
end create_data;
-- Ada lacks full access to IEEE 754 aka IEC 559. The following works
-- because a NaN is not equal to any other float, including itself.
-- Use of the 'valid attribute might also work, as might casting to a 64-bit
-- Integer and comparing to the known bit pattern for NaN; but beware of
-- quiet NaNs and signalling NaNs. See the discussion at
-- http://groups.google.com/group/comp.lang.ada/browse_thread/thread/772ddcb41cd06d5b?hl=en
function Is_NaN(x : Long_Float) return Boolean is
begin
return x /= x;
end Is_NaN;
begin
xm := -0.2;
ym := -0.2;
xMM := 0.6;
yMM := 0.6;
opt(2) := wmin;
opt(3) := Long_Float(knn_order);
opt(4) := threshold;
-- Parse and process command line arguments
Parse_Command_Line_Arguments(Parse_Full);
-- Initialize plplot
Initialize_PLplot;
cmap1_init;
Random_Number_Seed(5489);
create_data(x, y, z); -- the sampled data
zmin := Vector_Min(z);
zmax := Vector_Max(z);
create_grid(xg, yg); -- Grid the data at the output grided data.
Set_Pen_Color(Red);
Set_Environment(xm, xMM, ym, yMM, Justified_Square_Box, Linear_Box_Plus);
Set_Pen_Color(White);
Write_Labels("X", "Y", "The original data sampling");
for i in 0 .. (pts-1) loop
Set_Color_Map_1( (z(i)-zmin)/(zmax-zmin) );
Draw_String( x(i .. i), y(i .. i), "#(727)" );
end loop;
Advance_To_Subpage(Next_Subpage);
Set_Number_Of_Subpages(3, 2);
for k in 0 .. 1 loop
Advance_To_Subpage(Next_Subpage);
for alg in 1 .. 6 loop
Grid_Data(x, y, z, xg, yg, zg, alg, opt(alg - 1));
-- CSA can generate NaNs (only interpolates?!).
-- DTLI and NNI can generate NaNs for points outside the convex hull
-- of the data points.
-- NNLI can generate NaNs if a sufficiently thick triangle is not found
-- PLplot should be NaN/Inf aware, but changing it now is quite a job...
-- so, instead of not plotting the NaN regions, a weighted average over
-- the neighbors is done.
if alg = GRID_CSA or alg = GRID_DTLI or alg = GRID_NNLI or alg = GRID_NNI then
for i in xg'range loop
for j in yg'range loop
if Is_NaN(zg(i, j)) then -- average (IDW) over the 8 neighbors
zg(i, j) := 0.0;
dist := 0.0;
for ii in i - 1 .. i + 1 loop
exit when ii >= xp;
for jj in j - 1 .. j + 1 loop
exit when jj >= yp;
if ii >= 0 and jj >= 0 then
if not Is_NaN(zg(ii, jj)) then
if abs(ii - i) + abs(jj - j) = 1 then
d := 1.0;
else
d := 1.4142;
end if;
zg(i, j) := zg(i, j) + zg(ii, jj) / (d * d);
dist := dist + d;
end if;
end if;
end loop; -- jj
end loop; -- ii
if dist /= 0.0 then
zg(i, j) := zg(i,j) / dist;
else
zg(i, j) := zmin;
end if;
end if;
end loop; -- j
end loop; -- i
end if;
lzm := Matrix_Min(zg);
lzMM := Matrix_Max(zg);
lzm := Vector_Min((lzm, zmin));
lzMM := Vector_Max((lzMM, zmax));
-- Increase limits slightly to prevent spurious contours
-- due to rounding errors.
lzm := lzm - 0.01;
lzMM := lzMM + 0.01;
Set_Pen_Color(Red);
Advance_To_Subpage(alg);
if k = 0 then
for i in clev'range loop
clev(i) := lzm + (lzMM - lzm) / Long_Float(nl-1) * Long_Float(i);
end loop;
Set_Environment_Clear_Subpage(xm, xMM, ym, yMM, Justified_Square_Box, Linear_Box_Plus);
Set_Pen_Color(White);
Write_Labels("X", "Y", title(alg - 1));
Shade_Regions(zg, null, xm, xMM, ym, yMM,
clev, 1.0, 0, 1.0, Fill_Polygon'access, True, null, System.Null_Address);
Set_Pen_Color(Yellow);
else
for i in clev'range loop
clev(i) := lzm + (lzMM - lzm) / Long_Float(nl - 1) * Long_Float(i);
end loop;
Set_Viewport_Normalized(0.0, 1.0, 0.0, 0.9);
Set_Viewport_World(-1.1, 0.75, -0.65, 1.20);
-- For the comparition to be fair, all plots should have the
-- same z values, but to get the max/min of the data generated
-- by all algorithms would imply two passes. Keep it simple.
Set_Up_3D(1.0, 1.0, 1.0, xm, xMM, ym, yMM, lzm, lzMM, 30.0, -40.0);
Box_Around_Viewport_3D("bntu", "X", 0.0, 0,
"bntu", "Y", 0.0, 0,
"bcdfntu", "Z", 0.5, 0);
Set_Pen_Color(White);
Write_Labels("", "", title(alg - 1));
Plot_3D_Base_Contour(xg, yg, zg, DRAW_LINEXY + MAG_COLOR + BASE_CONT, clev);
end if;
end loop; -- alg
end loop; -- k
End_PLplot;
end xstandard21a;
|