File: xtraditional08a.adb

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (222 lines) | stat: -rw-r--r-- 8,295 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
-- 3-d plot demo.

-- Copyright (C) 2008-2016 Jerry Bauck

-- This file is part of PLplot.

-- PLplot is free software; you can redistribute it and/or modify
-- it under the terms of the GNU Library General Public License as published
-- by the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.

-- PLplot is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-- GNU Library General Public License for more details.

-- You should have received a copy of the GNU Library General Public License
-- along with PLplot; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

with
    Ada.Strings.Unbounded,
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    PLplot_Auxiliary,
    PLplot_Traditional;
use
    Ada.Strings.Unbounded,
    Ada.Numerics,
    Ada.Numerics.Long_Elementary_Functions,
    PLplot_Auxiliary,
    PLplot_Traditional;

procedure xtraditional08a is
    -- These values must be odd, for the middle
    -- of the index range to be an integer, and thus
    -- to correspond to the exact floating point centre
    -- of the sombrero.
    XPTS : Integer := 35;
    YPTS : Integer := 45;
    x : Real_Vector(0 .. XPTS - 1);
    y : Real_Vector(0 .. YPTS - 1);
    z : Real_Matrix(0 .. XPTS - 1, 0 .. YPTS - 1);
    z_row_major : Real_Vector(0 .. XPTS * YPTS - 1); -- Guess at the actual dimensions since
    z_col_major : Real_Vector(0 .. XPTS * YPTS - 1); -- C doesn't give a clue.
    dx : Long_Float := 2.0 / Long_Float(XPTS - 1);
    dy : Long_Float := 2.0 / Long_Float(YPTS - 1);
    xx, yy, r : Long_Float;
    zmin, zmax, step : Long_Float;
    LEVELS : Integer := 10;
    clevel: Real_Vector(0 .. LEVELS - 1);
    nlevel : Integer := LEVELS;

    indexxmin : Integer := 0;
    indexxmax : Integer := XPTS;
    indexymin : Integer_Array_1D(0 .. XPTS - 1);
    indexymax : Integer_Array_1D(0 .. XPTS - 1);
    zlimited : Real_Matrix(0 .. XPTS - 1, 0 .. YPTS - 1);

    -- Parameters of ellipse (in x, y index coordinates) that limits the data.
    -- x0, y0 correspond to the exact floating point centre of the index range.
    x0 : Long_Float := 0.5 * Long_Float(XPTS - 1);
    a  : Long_Float := 0.9 * x0;
    y0 : Long_Float := 0.5 * Long_Float(YPTS - 1);
    b  : Long_Float := 0.7 * y0;
    square_root : Long_Float;

    sombrero : Boolean := True; -- Edit this to choose sombrero or Rosenbrock function.
    rosen : Boolean := not sombrero; -- Toggle Rosenbrock according to sombrero.
    alt : Real_Vector(0 .. 1) := (60.0, 40.0);
    az  : Real_Vector(0 .. 1) := (30.0, -30.0);
    title : array(0 .. 1) of Unbounded_String :=
        (TUB("#frPLplot Example 8 - Alt=60, Az=30"),
         TUB("#frPLplot Example 8 - Alt=40, Az=-30"));

    ------------------------------------------------------------------------------
    -- cmap1_init1

    -- Initializes color map 1 in HLS space.
    -- Basic grayscale variation from half-dark (which makes more interesting
    -- looking plot compared to dark) to light.
    -- An interesting variation on this:
    -- s[1] = 1.0
    ----------------------------------------------------------------------------

    procedure cmap1_init(gray : Boolean) is
        i, h, l, s : Real_Vector(0 .. 1);
    begin
        i(0) := 0.0;        -- left boundary
        i(1) := 1.0;        -- right boundary

        if gray then
            h(0) := 0.0;	-- hue -- low: red (arbitrary if s=0)
            h(1) := 0.0;	-- hue -- high: red (arbitrary if s=0)

            l(0) := 0.5;	-- lightness -- low: half-dark
            l(1) := 1.0;	-- lightness -- high: light

            s(0) := 0.0;	-- minimum saturation
            s(1) := 0.0;	-- minimum saturation
         else
            h(0) := 240.0;  -- blue -> green -> yellow ->
            h(1) := 0.0;    -- -> red

            l(0) := 0.6;
            l(1) := 0.6;

            s(0) := 0.8;
            s(1) := 0.8;
        end if;

        plscmap1n(256);
        plscmap1l(HLS, i, h, l, s, Alt_Hue_Path_None);
    end cmap1_init;

begin
    -- Parse and process command line arguments
    plparseopts(PL_PARSE_FULL);
    -- Chose sombrero or rosen in declarations, above.

    -- Initialize plplot
    plinit;

    for i in x'range loop
        -- x(i) := Long_Float(i - XPTS / 2) / Long_Float(XPTS / 2);
        x(i) := -1.0 + Long_Float(i) * dx;
        if rosen then
            x(i) :=  x(i) * 1.5;
        end if;
    end loop;

    for j in y'range loop
        -- y(i) := Long_Float(i - YPTS / 2) / Long_Float(YPTS / 2);
        y(j) := -1.0 + Long_Float(j) * dy;
        if rosen then
            y(j) := y(j) + 0.5;
        end if;
    end loop;

    for i in x'range loop
        xx := x(i);
        for j in y'range loop
            yy := y(j);
            if rosen then
                z(i, j) := (1.0 - xx) * (1.0 - xx) + 100.0 * (yy - (xx * xx)) * (yy - (xx * xx));
                -- The log argument might be zero for just the right grid.
                if z(i, j) > 0.0 then
                    z(i, j) := log(z(i, j));
                else
                    z(i, j) := -5.0; -- -MAXFLOAT would mess-up up the scale
                end if;
            else -- Sombrero
                r := sqrt(xx * xx + yy * yy);
                z(i, j) := exp(-r * r) * cos(2.0 * pi * r);
            end if;
            z_row_major(i * YPTS + j) := z(i, j);
            z_col_major(i + XPTS * j) := z(i, j);
        end loop; -- j
    end loop; -- i

    for i in indexxmin .. indexxmax - 1 loop
        square_root := sqrt( 1.0 - Long_Float'Min(1.0, ((Long_Float(i) - x0) / a)**2));
        -- Add 0.5 to find nearest integer and therefore preserve symmetry
        -- with regard to lower and upper bound of y range.
        -- Ada note: Trunc() is in plplot_auxiliary.adb.
        indexymin(i) := Integer'Max(0, Trunc(0.5 + y0 - b * square_root ));
        -- indexymax calculated with the convention that it is 1
        -- greater than highest valid index.
        indexymax(i) := Integer'Min(YPTS, 1 + Trunc(0.5 + y0 + b * square_root));
        for j in indexymin(i) .. indexymax(i) - 1 loop
            zlimited(i, j) := z(i, j);
        end loop;
    end loop;

    zmin := Matrix_Min(z);
    zmax := Matrix_Max(z);
    step := (zmax - zmin) / Long_Float(nlevel + 1);
    for i in clevel'range loop
        clevel(i) := zmin + step + step * Long_Float(i);
    end loop;

    pllightsource(1.0, 1.0, 1.0);

    for k in alt'range loop
        for ifshade in 0 .. 4 loop
            pladv(0);
            plvpor(0.0, 1.0, 0.0, 0.9);
            plwind(-1.0, 1.0, -0.9, 1.1);
            plcol0(3);
            plmtex("t", 1.0, 0.5, 0.5, To_String(title(k)));
            plcol0(1);
            if rosen then
                plw3d(1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt(k), az(k));
            else
                plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt(k), az(k));
            end if;

            plbox3("bnstu", "x axis", 0.0, 0,
                "bnstu", "y axis", 0.0, 0,
                "bcdmnstuv", "z axis", 0.0, 0);
            plcol0(2);

            if ifshade = 0 then -- diffuse light surface plot
                cmap1_init(True);
                plsurf3d (x, y, z, 0, clevel); -- clevel is not used here
            elsif ifshade = 1 then -- magnitude colored plot
                cmap1_init(False);
                plsurf3d(x, y, z, MAG_COLOR, clevel);
            elsif ifshade = 2 then --  magnitude colored plot with faceted squares
                cmap1_init(False);
                plsurf3d(x, y, z, MAG_COLOR + FACETED, clevel);
            elsif ifshade = 3 then -- magnitude colored plot with contours
                cmap1_init(False);
                plsurf3d(x, y, z, MAG_COLOR + SURF_CONT + BASE_CONT, clevel);
            else -- magnitude colored plot with contours and index limits
                cmap1_init(False);
                plsurf3dl(x, y, zlimited, MAG_COLOR + SURF_CONT + BASE_CONT, clevel, indexxmin, indexxmax, indexymin, indexymax );
            end if;
        end loop; -- ifshade
    end loop; -- k
    plend;
end xtraditional08a;