1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// 3-d plot demo.
//
// Copyright (C) 2004 Alan W. Irwin
// Copyright (C) 2004 Rafael Laboissiere
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//
//
#include "plcdemos.h"
// plexit not declared in public header! However, explicit
// declaration (commented out below) does not work for g++ compiler
// (used for non-dynamic and static cases) for unknown reasons. So
// use private header instead to declare plexit (which does work).
//PLDLLIMPEXP void
//plexit( PLCHAR_VECTOR errormsg );
#include "plplotP.h"
// These values must be odd, for the middle
// of the index range to be an integer, and thus
// to correspond to the exact floating point centre
// of the sombrero.
#define XPTS 35 // Data points in x
#define YPTS 45 // Data points in y
static PLFLT alt[] = { 60.0, 40.0 };
static PLFLT az[] = { 30.0, -30.0 };
static void cmap1_init( int );
static PLCHAR_VECTOR title[] =
{
"#frPLplot Example 8 - Alt=60, Az=30",
"#frPLplot Example 8 - Alt=40, Az=-30",
};
//--------------------------------------------------------------------------
// cmap1_init1
//
// Initializes color map 1 in HLS space.
// Basic grayscale variation from half-dark (which makes more interesting
// looking plot compared to dark) to light.
// An interesting variation on this:
// s[1] = 1.0
//--------------------------------------------------------------------------
static void
cmap1_init( int gray )
{
PLFLT i[2], h[2], l[2], s[2];
i[0] = 0.0; // left boundary
i[1] = 1.0; // right boundary
if ( gray )
{
h[0] = 0.0; // hue -- low: red (arbitrary if s=0)
h[1] = 0.0; // hue -- high: red (arbitrary if s=0)
l[0] = 0.5; // lightness -- low: half-dark
l[1] = 1.0; // lightness -- high: light
s[0] = 0.0; // minimum saturation
s[1] = 0.0; // minimum saturation
}
else
{
h[0] = 240; // blue -> green -> yellow ->
h[1] = 0; // -> red
l[0] = 0.6;
l[1] = 0.6;
s[0] = 0.8;
s[1] = 0.8;
}
plscmap1n( 256 );
c_plscmap1l( 0, 2, i, h, l, s, NULL );
}
//--------------------------------------------------------------------------
// main
//
// Does a series of 3-d plots for a given data set, with different
// viewing options in each plot.
//--------------------------------------------------------------------------
static int rosen;
static int if_plfsurf3d;
static PLOptionTable options[] = {
{
"rosen", // Turns on use of Rosenbrock function
NULL,
NULL,
&rosen,
PL_OPT_BOOL,
"-rosen",
"Use the log_e of the \"Rosenbrock\" function"
},
{
"if_plfsurf3d",
NULL,
NULL,
&if_plfsurf3d,
PL_OPT_BOOL,
"-if_plfsurf3d",
"Use C-only plfsurf3d API rather then usual cross-language plsurf3d API"
},
{
NULL, // option
NULL, // handler
NULL, // client data
NULL, // address of variable to set
0, // mode flag
NULL, // short syntax
NULL
} // long syntax
};
#define LEVELS 10
int
main( int argc, char *argv[] )
{
int i, j, k;
PLFLT *x, *y, **z;
// Shut up spurious undefined warnings from the compiler.
PLFLT *z_row_major = NULL, *z_col_major = NULL;
PLFLT dx = 2. / (PLFLT) ( XPTS - 1 );
PLFLT dy = 2. / (PLFLT) ( YPTS - 1 );
PLfGrid2 grid_c, grid_row_major, grid_col_major;
PLFLT xx, yy, r;
PLINT ifshade;
PLFLT zmin, zmax, step;
PLFLT clevel[LEVELS];
PLINT nlevel = LEVELS;
PLINT indexxmin = 0;
PLINT indexxmax = XPTS;
PLINT *indexymin;
PLINT *indexymax;
PLFLT **zlimited;
// parameters of ellipse (in x, y index coordinates) that limits the data.
// x0, y0 correspond to the exact floating point centre of the index
// range.
PLFLT x0 = 0.5 * (PLFLT) ( XPTS - 1 );
PLFLT a = 0.9 * x0;
PLFLT y0 = 0.5 * (PLFLT) ( YPTS - 1 );
PLFLT b = 0.7 * y0;
PLFLT square_root;
// Parse and process command line arguments
plMergeOpts( options, "x08c options", NULL );
(void) plparseopts( &argc, argv, PL_PARSE_FULL );
// Initialize plplot
plinit();
// Allocate data structures
x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) );
y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) );
plAlloc2dGrid( &z, XPTS, YPTS );
if ( if_plfsurf3d )
{
z_row_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) );
z_col_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) );
if ( !z_row_major || !z_col_major )
plexit( "Memory allocation error" );
grid_c.f = z;
grid_row_major.f = (PLFLT **) z_row_major;
grid_col_major.f = (PLFLT **) z_col_major;
grid_c.nx = grid_row_major.nx = grid_col_major.nx = XPTS;
grid_c.ny = grid_row_major.ny = grid_col_major.ny = YPTS;
}
for ( i = 0; i < XPTS; i++ )
{
x[i] = -1. + (PLFLT) i * dx;
if ( rosen )
x[i] *= 1.5;
}
for ( j = 0; j < YPTS; j++ )
{
y[j] = -1. + (PLFLT) j * dy;
if ( rosen )
y[j] += 0.5;
}
for ( i = 0; i < XPTS; i++ )
{
xx = x[i];
for ( j = 0; j < YPTS; j++ )
{
yy = y[j];
if ( rosen )
{
z[i][j] = pow( 1. - xx, 2. ) + 100. * pow( yy - pow( xx, 2. ), 2. );
// The log argument might be zero for just the right grid.
if ( z[i][j] > 0. )
z[i][j] = log( z[i][j] );
else
z[i][j] = -5.; // -MAXFLOAT would mess-up up the scale
}
else
{
r = sqrt( xx * xx + yy * yy );
z[i][j] = exp( -r * r ) * cos( 2.0 * M_PI * r );
}
if ( if_plfsurf3d )
{
z_row_major[i * YPTS + j] = z[i][j];
z_col_major[i + XPTS * j] = z[i][j];
}
}
}
// Allocate and calculate y index ranges and corresponding zlimited.
plAlloc2dGrid( &zlimited, XPTS, YPTS );
indexymin = (PLINT *) malloc( XPTS * sizeof ( PLINT ) );
indexymax = (PLINT *) malloc( XPTS * sizeof ( PLINT ) );
if ( !indexymin || !indexymax )
plexit( "Memory allocation error" );
//printf("XPTS = %d\n", XPTS);
//printf("x0 = %f\n", x0);
//printf("a = %f\n", a);
//printf("YPTS = %d\n", YPTS);
//printf("y0 = %f\n", y0);
//printf("b = %f\n", b);
// These values should all be ignored because of the i index range.
#if 0
for ( i = 0; i < indexxmin; i++ )
{
indexymin[i] = 0;
indexymax[i] = YPTS;
for ( j = indexymin[i]; j < indexymax[i]; j++ )
// Mark with large value to check this is ignored.
zlimited[i][j] = 1.e300;
}
#endif
for ( i = indexxmin; i < indexxmax; i++ )
{
square_root = sqrt( 1. - MIN( 1., pow( ( i - x0 ) / a, 2. ) ) );
// Add 0.5 to find nearest integer and therefore preserve symmetry
// with regard to lower and upper bound of y range.
indexymin[i] = MAX( 0, (PLINT) ( 0.5 + y0 - b * square_root ) );
// indexymax calculated with the convention that it is 1
// greater than highest valid index.
indexymax[i] = MIN( YPTS, 1 + (PLINT) ( 0.5 + y0 + b * square_root ) );
//printf("i, b*square_root, indexymin[i], YPTS - indexymax[i] = %d, %e, %d, %d\n", i, b*square_root, indexymin[i], YPTS - indexymax[i]);
#if 0
// These values should all be ignored because of the j index range.
for ( j = 0; j < indexymin[i]; j++ )
// Mark with large value to check this is ignored.
zlimited[i][j] = 1.e300;
#endif
for ( j = indexymin[i]; j < indexymax[i]; j++ )
zlimited[i][j] = z[i][j];
#if 0
// These values should all be ignored because of the j index range.
for ( j = indexymax[i]; j < YPTS; j++ )
// Mark with large value to check this is ignored.
zlimited[i][j] = 1.e300;
#endif
}
#if 0
// These values should all be ignored because of the i index range.
for ( i = indexxmax; i < XPTS; i++ )
{
indexymin[i] = 0;
indexymax[i] = YPTS;
for ( j = indexymin[i]; j < indexymax[i]; j++ )
// Mark with large value to check this is ignored.
zlimited[i][j] = 1.e300;
}
#endif
plMinMax2dGrid( (PLFLT_MATRIX) z, XPTS, YPTS, &zmax, &zmin );
step = ( zmax - zmin ) / ( nlevel + 1 );
for ( i = 0; i < nlevel; i++ )
clevel[i] = zmin + step + step * i;
pllightsource( 1., 1., 1. );
for ( k = 0; k < 2; k++ )
{
for ( ifshade = 0; ifshade < 5; ifshade++ )
{
pladv( 0 );
plvpor( 0.0, 1.0, 0.0, 0.9 );
plwind( -1.0, 1.0, -0.9, 1.1 );
plcol0( 3 );
plmtex( "t", 1.0, 0.5, 0.5, title[k] );
plcol0( 1 );
if ( rosen )
plw3d( 1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k] );
else
plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt[k], az[k] );
plbox3( "bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0 );
plcol0( 2 );
if ( ifshade == 0 ) // diffuse light surface plot
{
cmap1_init( 1 );
if ( if_plfsurf3d )
plfsurf3d( x, y, plf2ops_c(), (PLPointer) z, XPTS, YPTS, 0, NULL, 0 );
else
plsurf3d( x, y, (PLFLT_MATRIX) z, XPTS, YPTS, 0, NULL, 0 );
}
else if ( ifshade == 1 ) // magnitude colored plot
{
cmap1_init( 0 );
if ( if_plfsurf3d )
plfsurf3d( x, y, plf2ops_grid_c(), ( PLPointer ) & grid_c, XPTS, YPTS, MAG_COLOR, NULL, 0 );
else
plsurf3d( x, y, (PLFLT_MATRIX) z, XPTS, YPTS, MAG_COLOR, NULL, 0 );
}
else if ( ifshade == 2 ) // magnitude colored plot with faceted squares
{
cmap1_init( 0 );
if ( if_plfsurf3d )
plfsurf3d( x, y, plf2ops_grid_row_major(), ( PLPointer ) & grid_row_major, XPTS, YPTS, MAG_COLOR | FACETED, NULL, 0 );
else
plsurf3d( x, y, (PLFLT_MATRIX) z, XPTS, YPTS, MAG_COLOR | FACETED, NULL, 0 );
}
else if ( ifshade == 3 ) // magnitude colored plot with contours
{
cmap1_init( 0 );
if ( if_plfsurf3d )
plfsurf3d( x, y, plf2ops_grid_col_major(), ( PLPointer ) & grid_col_major, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel );
else
plsurf3d( x, y, (PLFLT_MATRIX) z, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel );
}
else // magnitude colored plot with contours and index limits.
{
cmap1_init( 0 );
plsurf3dl( x, y, (PLFLT_MATRIX) zlimited, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel, indexxmin, indexxmax, indexymin, indexymax );
}
}
}
// Clean up
free( (void *) x );
free( (void *) y );
plFree2dGrid( z, XPTS, YPTS );
if ( if_plfsurf3d )
{
free( (void *) z_row_major );
free( (void *) z_col_major );
}
plFree2dGrid( zlimited, XPTS, YPTS );
free( (void *) indexymin );
free( (void *) indexymax );
plend();
exit( 0 );
}
|