1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// 3-d line and point plot demo. Adapted from x08c.c.
//
import std.math;
import std.string;
import plplot;
int[] opt = [ 1, 0, 1, 0 ];
PLFLT[] alt = [ 20.0, 35.0, 50.0, 65.0 ];
PLFLT[] az = [ 30.0, 40.0, 50.0, 60.0 ];
//--------------------------------------------------------------------------
// main
//
// Does a series of 3-d plots for a given data set, with different
// viewing options in each plot.
//--------------------------------------------------------------------------
int main( char[][] args )
{
const int npts = 1000;
// Parse and process command line arguments
plparseopts( args, PL_PARSE_FULL );
// Initialize plplot
plinit();
for ( int k = 0; k < 4; k++ )
test_poly( k );
PLFLT[] x = new PLFLT[npts];
PLFLT[] y = new PLFLT[npts];
PLFLT[] z = new PLFLT[npts];
// From the mind of a sick and twisted physicist...
PLFLT r;
for ( int i = 0; i < npts; i++ )
{
z[i] = -1. + 2. * i / npts;
// Pick one ...
// r = 1. - cast(PLFLT)i/npts;
r = z[i];
x[i] = r * cos( 2. * PI * 6. * i / npts );
y[i] = r * sin( 2. * PI * 6. * i / npts );
}
for ( int k = 0; k < 4; k++ )
{
pladv( 0 );
plvpor( 0.0, 1.0, 0.0, 0.9 );
plwind( -1.0, 1.0, -0.9, 1.1 );
plcol0( 1 );
plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k] );
plbox3( "bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0 );
plcol0( 2 );
if ( opt[k] )
{
plline3( x, y, z );
}
else
{
// U+22C5 DOT OPERATOR.
plstring3( x, y, z, "⋅" );
}
plcol0( 3 );
plmtex( "t", 1.0, 0.5, 0.5, format( "#frPLplot Example 18 - Alt=%.0f, Az=%.0f", alt[k], az[k] ) );
}
plend();
return 0;
}
void test_poly( int k )
{
PLINT[][] draw = [ [ 1, 1, 1, 1 ],
[ 1, 0, 1, 0 ],
[ 0, 1, 0, 1 ],
[ 1, 1, 0, 0 ] ];
PLFLT[] x = new PLFLT[5];
PLFLT[] y = new PLFLT[5];
PLFLT[] z = new PLFLT[5];
pladv( 0 );
plvpor( 0.0, 1.0, 0.0, 0.9 );
plwind( -1.0, 1.0, -0.9, 1.1 );
plcol0( 1 );
plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k] );
plbox3( "bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0 );
plcol0( 2 );
PLFLT theta( int a )
{
return 2 * PI * a / 20;
}
PLFLT phi( int a )
{
return PI * a / 20.1;
}
for ( int i = 0; i < 20; i++ )
{
for ( int j = 0; j < 20; j++ )
{
x[0] = sin( phi( j ) ) * cos( theta( i ) );
y[0] = sin( phi( j ) ) * sin( theta( i ) );
z[0] = cos( phi( j ) );
x[1] = sin( phi( j + 1 ) ) * cos( theta( i ) );
y[1] = sin( phi( j + 1 ) ) * sin( theta( i ) );
z[1] = cos( phi( j + 1 ) );
x[2] = sin( phi( j + 1 ) ) * cos( theta( i + 1 ) );
y[2] = sin( phi( j + 1 ) ) * sin( theta( i + 1 ) );
z[2] = cos( phi( j + 1 ) );
x[3] = sin( phi( j ) ) * cos( theta( i + 1 ) );
y[3] = sin( phi( j ) ) * sin( theta( i + 1 ) );
z[3] = cos( phi( j ) );
x[4] = sin( phi( j ) ) * cos( theta( i ) );
y[4] = sin( phi( j ) ) * sin( theta( i ) );
z[4] = cos( phi( j ) );
plpoly3( x, y, z, draw[k], 1 );
}
}
plcol0( 3 );
plmtex( "t", 1.0, 0.5, 0.5, "unit radius sphere" );
}
|