1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
! 3-d plot demo
!
! Copyright (C) 2004-2016 Alan W. Irwin
!
! This file is part of PLplot.
!
! PLplot is free software; you can redistribute it and/or modify
! it under the terms of the GNU Library General Public License as
! published by the Free Software Foundation; either version 2 of the
! License, or (at your option) any later version.
!
! PLplot is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Library General Public License for more details.
!
! You should have received a copy of the GNU Library General Public
! License along with PLplot; if not, write to the Free Software
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
! N.B. the pl_test_flt parameter used in this code is only
! provided by the plplot module to allow convenient developer
! testing of either kind(1.0) or kind(1.0d0) floating-point
! precision regardless of the floating-point precision of the
! PLplot C libraries. We do not guarantee the value of this test
! parameter so it should not be used by users, and instead user
! code should replace the pl_test_flt parameter by whatever
! kind(1.0) or kind(1.0d0) precision is most convenient for them.
! For further details on floating-point precision issues please
! consult README_precision in this directory.
!
program x08f
use plplot, double_PI => PL_PI
use plfortrandemolib
implicit none
real(kind=pl_test_flt), parameter :: PI = double_PI
integer :: i, j, k, ifshade
! xdim is the leading dimension of z, xpts <= xdim is the leading
! dimension of z that is defined.
integer, parameter :: xdim=99, ydim=100, xpts=35, ypts=45
real(kind=pl_test_flt) :: x(xdim), y(ydim), z(xdim,ypts), xx, yy, r
real(kind=pl_test_flt) :: zlimited(xdim,ypts)
integer, parameter :: indexxmin = 1
integer, parameter :: indexxmax = xpts
integer :: indexymin(xpts), indexymax(xpts)
! parameters of ellipse (in x, y index coordinates) that limits the data.
! x0, y0 correspond to the exact floating point centre of the index
! range.
! Note: using the Fortran convention of starting indices at 1
real(kind=pl_test_flt), parameter :: x0 = 0.5_pl_test_flt * ( xpts + 1 )
real(kind=pl_test_flt), parameter :: a = 0.9_pl_test_flt * ( x0 - 1.0_pl_test_flt )
real(kind=pl_test_flt), parameter :: y0 = 0.5_pl_test_flt * ( ypts + 1 )
real(kind=pl_test_flt), parameter :: b = 0.7_pl_test_flt * ( y0 - 1.0_pl_test_flt )
real(kind=pl_test_flt) :: square_root
character (len=80) :: title(2) = &
(/'#frPLplot Example 8 - Alt=60, Az=30 ', &
'#frPLplot Example 8 - Alt=40, Az=-30'/)
real(kind=pl_test_flt) :: alt(2) = (/60.0_pl_test_flt, 40.0_pl_test_flt/)
real(kind=pl_test_flt) :: az(2) = (/30.0_pl_test_flt,-30.0_pl_test_flt/)
integer :: rosen
integer, parameter :: nlevel = 10
integer :: plparseopts_rc
real(kind=pl_test_flt) :: zmin, zmax, step, clevel(nlevel)
real(kind=pl_test_flt) :: dx, dy
! Process command-line arguments
plparseopts_rc = plparseopts(PL_PARSE_FULL)
if(plparseopts_rc .ne. 0) stop "plparseopts error"
rosen = 0
! x(1:xpts) = (arange(xpts) - (xpts-1)/2.0_pl_test_flt) / ((xpts-1)/2.0_pl_test_flt)
! y(1:ypts) = (arange(ypts) - (ypts-1)/2.0_pl_test_flt) / ((ypts-1)/2.0_pl_test_flt)
!
dx = 2.0_pl_test_flt / (xpts - 1)
dy = 2.0_pl_test_flt / (ypts - 1)
do i = 1,xpts
x(i) = -1.0_pl_test_flt + (i-1) * dx
enddo
do j = 1,ypts
y(j) = -1.0_pl_test_flt + (j-1) * dy
enddo
if ( rosen == 1 ) then
x = 1.5_pl_test_flt * x
y = y + 0.5_pl_test_flt
endif
do i=1,xpts
xx = x(i)
do j=1,ypts
yy = y(j)
if (rosen == 1) then
z(i,j) = (1._pl_test_flt - xx)**2 + 100._pl_test_flt*(yy - xx**2)**2
! The log argument may be zero for just the right grid.
if (z(i,j) > 0._pl_test_flt) then
z(i,j) = log(z(i,j))
else
z(i,j) = -5._pl_test_flt
endif
else
! Sombrero function
r = sqrt(xx**2 + yy**2)
z(i,j) = exp(-r**2) * cos(2.0_pl_test_flt*PI*r)
endif
enddo
enddo
zlimited = huge(1.0_pl_test_flt)
do i = indexxmin, indexxmax
square_root = sqrt( 1.0_pl_test_flt - min( 1.0_pl_test_flt, (( i - x0 ) / a) ** 2 ) )
! Add 0.5 to find nearest integer and therefore preserve symmetry
! with regard to lower and upper bound of y range.
indexymin(i) = max( 1, int( 0.5_pl_test_flt + y0 - b * square_root ) )
! indexymax calculated with the convention that it is 1
! greater than highest valid index.
indexymax(i) = min( ypts, 1 + int( 0.5_pl_test_flt + y0 + b * square_root ) )
do j = indexymin(i),indexymax(i)
zlimited(i,j) = z(i,j)
enddo
enddo
zmin = minval( z(1:xpts,:) )
zmax = maxval( z(1:xpts,:) )
step = (zmax-zmin)/(nlevel+1)
clevel = zmin + step * arange(1,nlevel+1)
call plinit()
call pllightsource(1._pl_test_flt, 1._pl_test_flt, 1._pl_test_flt)
do k=1,2
do ifshade = 0, 4
call pladv(0)
call plvpor(0.0_pl_test_flt, 1.0_pl_test_flt, 0.0_pl_test_flt, 0.9_pl_test_flt )
call plwind(-1.0_pl_test_flt, 1.0_pl_test_flt, -0.9_pl_test_flt, 1.1_pl_test_flt )
call plcol0(3)
call plmtex('t', 1.0_pl_test_flt, 0.5_pl_test_flt, 0.5_pl_test_flt, title(k))
call plcol0(1)
if (rosen ==1) then
call plw3d(1.0_pl_test_flt, 1.0_pl_test_flt, 1.0_pl_test_flt, -1.5_pl_test_flt, &
1.5_pl_test_flt, -0.5_pl_test_flt, 1.5_pl_test_flt, zmin, zmax, alt(k),az(k))
else
call plw3d(1.0_pl_test_flt, 1.0_pl_test_flt, 1.0_pl_test_flt, -1.0_pl_test_flt, &
1.0_pl_test_flt, -1.0_pl_test_flt, 1.0_pl_test_flt, zmin, zmax, alt(k),az(k))
endif
call plbox3('bnstu','x axis', 0.0_pl_test_flt, 0, &
'bnstu', 'y axis', 0.0_pl_test_flt, 0, &
'bcdmnstuv','z axis', 0.0_pl_test_flt, 0)
call plcol0(2)
select case (ifshade)
case( 0 )
! diffuse light surface plot
call cmap1_init(1)
call plsurf3d(x(:xpts), y(:ypts), z(:xpts,:ypts), &
0, clevel(nlevel:1))
case( 1 )
! magnitude colored plot
call cmap1_init(0)
call plsurf3d(x(:xpts), y(:ypts), z(:xpts,:ypts), &
MAG_COLOR, clevel(nlevel:1))
case( 2 )
! magnitude colored plot with faceted squares
call cmap1_init(0)
call plsurf3d(x(:xpts), y(:ypts), z(:xpts,:ypts), &
ior(MAG_COLOR, FACETED), clevel(nlevel:1))
case( 3 )
! magnitude colored plot with contours
call cmap1_init(0)
call plsurf3d(x(:xpts), y(:ypts), z(:xpts,:ypts), &
ior(MAG_COLOR, ior(SURF_CONT, BASE_CONT)), clevel)
case( 4 )
! magnitude colored plot with contours and index limits
call cmap1_init(0)
! N.B. indexxmin, indexymin, and indexymax are
! calculated above using one-based indexing, but must
! substract one from all of them below to convert to
! zero-based indexing. Zero-based indexing is assumed
! for those 3 arguments by the Fortran binding to make
! that binding consistent with the rest of our
! bindings and our core C code in this regard.
call plsurf3dl(x(:xpts), y(:ypts), zlimited(:xpts,:ypts), &
ior(MAG_COLOR, ior(SURF_CONT, BASE_CONT)), clevel, &
indexxmin-1, indexymin-1, indexymax-1 )
case default
stop 'x08f: bad logic'
end select
enddo
enddo
call plend
contains
!----------------------------------------------------------------------------
subroutine cmap1_init(gray)
! For gray.eq.1, basic grayscale variation from half-dark
! to light. Otherwise, hue variations around the front of the
! colour wheel from blue to green to red with constant lightness
! and saturation.
integer :: gray
real(kind=pl_test_flt) :: i(0:1), h(0:1), l(0:1), s(0:1)
! left boundary
i(0) = 0._pl_test_flt
! right boundary
i(1) = 1._pl_test_flt
if (gray == 1) then
! hue -- low: red (arbitrary if s=0)
h(0) = 0.0_pl_test_flt
! hue -- high: red (arbitrary if s=0)
h(1) = 0.0_pl_test_flt
! lightness -- low: half-dark
l(0) = 0.5_pl_test_flt
! lightness -- high: light
l(1) = 1.0_pl_test_flt
! minimum saturation
s(0) = 0.0_pl_test_flt
! minimum saturation
s(1) = 0.0_pl_test_flt
else
! This combination of hues ranges from blue to cyan to green to yellow
! to red (front of colour wheel) with constant lightness = 0.6
! and saturation = 0.8.
! hue -- low: blue
h(0) = 240._pl_test_flt
! hue -- high: red
h(1) = 0.0_pl_test_flt
! lightness -- low:
l(0) = 0.6_pl_test_flt
! lightness -- high:
l(1) = 0.6_pl_test_flt
! saturation
s(0) = 0.8_pl_test_flt
! minimum saturation
s(1) = 0.8_pl_test_flt
endif
call plscmap1n(256)
call plscmap1l(.false., i, h, l, s)
end subroutine cmap1_init
end program x08f
|