1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
! Contour plot demo.
!
! Copyright (C) 2004-2016 Alan W. Irwin
!
! This file is part of PLplot.
!
! PLplot is free software; you can redistribute it and/or modify
! it under the terms of the GNU Library General Public License as
! published by the Free Software Foundation; either version 2 of the
! License, or (at your option) any later version.
!
! PLplot is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Library General Public License for more details.
!
! You should have received a copy of the GNU Library General Public
! License along with PLplot; if not, write to the Free Software
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
! N.B. the pl_test_flt parameter used in this code is only
! provided by the plplot module to allow convenient developer
! testing of either kind(1.0) or kind(1.0d0) floating-point
! precision regardless of the floating-point precision of the
! PLplot C libraries. We do not guarantee the value of this test
! parameter so it should not be used by users, and instead user
! code should replace the pl_test_flt parameter by whatever
! kind(1.0) or kind(1.0d0) precision is most convenient for them.
! For further details on floating-point precision issues please
! consult README_precision in this directory.
!
! Does several contour plots using different coordinate mappings.
program x09f
use plplot, double_PI => PL_PI, double_TWOPI => PL_TWOPI
use plfortrandemolib
use iso_c_binding, only: c_ptr, c_loc, c_f_pointer
implicit none
real(kind=pl_test_flt), parameter :: PI = double_PI
real(kind=pl_test_flt), parameter :: TWOPI = double_TWOPI
integer i, j
! xdim and ydim are the absolute static dimensions.
! nptsx, and nptsy are the (potentially dynamic) defined area of the 2D
! arrays that is actually used.
integer, parameter :: xdim=99, ydim=100, nptsx=35, nptsy=46
integer :: plparseopts_rc
real(kind=pl_test_flt) :: z(xdim, ydim), w(xdim, ydim), &
xg1(xdim), yg1(ydim), &
xg2(xdim, ydim), yg2(xdim, ydim)
real(kind=pl_test_flt) :: xc(nptsx), yc(nptsy)
real(kind=pl_test_flt) :: xx, yy, argx, argy, distort
real(kind=pl_test_flt) :: tr(6)
real(kind=pl_test_flt) :: clevel(11) = &
(/ -1._pl_test_flt, -0.8_pl_test_flt, -0.6_pl_test_flt, -0.4_pl_test_flt, -0.2_pl_test_flt, &
0._pl_test_flt, 0.2_pl_test_flt, 0.4_pl_test_flt, 0.6_pl_test_flt, 0.8_pl_test_flt, 1._pl_test_flt /)
type mypltr_data_type
! Only contains data required by the mypltr_data callback
real(kind=pl_test_flt), dimension(6) :: tr_data
end type mypltr_data_type
type(mypltr_data_type), target :: data
! Use tr plcont callback?
logical, parameter :: tr_callback = .false.
! Use pltr0 (identity transformation) callback? (only meaningful
! if tr_callback is .false.).
logical, parameter :: identity_callback = .false.
! Process command-line arguments
plparseopts_rc = plparseopts(PL_PARSE_FULL)
if(plparseopts_rc .ne. 0) stop "plparseopts error"
tr = (/ 2._pl_test_flt/real(nptsx-1,kind=pl_test_flt), 0.0_pl_test_flt, -1.0_pl_test_flt, &
0.0_pl_test_flt, 2._pl_test_flt/real(nptsy-1,kind=pl_test_flt), -1.0_pl_test_flt /)
! Calculate the data matrices.
xc = (arange(nptsx) - (nptsx/2)) / real(nptsx/2,kind=pl_test_flt)
yc = (arange(nptsy) - (nptsy/2)) / real(nptsy/2,kind=pl_test_flt) - 1.0_pl_test_flt
do i=1,nptsx
do j=1,nptsy
z(i,j) = xc(i)**2 - yc(j)**2
w(i,j) = 2._pl_test_flt*xc(i)*yc(j)
enddo
enddo
! Build the 1-d coord arrays.
distort = 0.4_pl_test_flt
xg1(1:nptsx) = coord_function( arange(nptsx) / real(nptsx-1,kind=pl_test_flt), distort )
yg1(1:nptsy) = coord_function( arange(nptsy) / real(nptsy-1,kind=pl_test_flt), -distort )
! Build the 2-d coord arrays.
do i=1,nptsx
xx = -1._pl_test_flt + real(i-1,kind=pl_test_flt)*2._pl_test_flt/real(nptsx-1,kind=pl_test_flt)
argx = 0.5_pl_test_flt*PI*xx
do j=1,nptsy
yy = -1._pl_test_flt + real(j-1,kind=pl_test_flt)*2._pl_test_flt/real(nptsy-1,kind=pl_test_flt)
argy = 0.5_pl_test_flt*PI*yy
xg2(i,j) = xx + distort*cos(argx)*cos(argy)
yg2(i,j) = yy - distort*cos(argx)*cos(argy)
enddo
enddo
call plinit
! Plot using identity transform
call pl_setcontlabelformat(4, 3)
call pl_setcontlabelparam(0.006_pl_test_flt, 0.3_pl_test_flt, 0.1_pl_test_flt, 1)
if(.not. tr_callback .and. identity_callback) then
call plenv( &
real(0,kind=pl_test_flt), real(nptsx-1,kind=pl_test_flt), &
real(0,kind=pl_test_flt), real(nptsy-1,kind=pl_test_flt), 0, 0)
else
call plenv(-1.0_pl_test_flt, 1.0_pl_test_flt, -1.0_pl_test_flt, 1.0_pl_test_flt, 0, 0)
endif
call plcol0(2)
if(tr_callback) then
call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, tr)
elseif(identity_callback) then
call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel)
else
data%tr_data = tr
call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, mypltr_data, c_loc(data))
endif
call plstyl( (/1500/), (/1500/) )
call plcol0(3)
if(tr_callback) then
call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, tr)
elseif(identity_callback) then
call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel)
else
call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, mypltr)
endif
call plstyl( (/integer ::/), (/integer ::/) )
call plcol0(1)
call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')
call pl_setcontlabelparam(0.006_pl_test_flt, 0.3_pl_test_flt, 0.1_pl_test_flt, 0)
! Plot using 1d coordinate transform
call plenv(-1.0_pl_test_flt, 1.0_pl_test_flt, -1.0_pl_test_flt, 1.0_pl_test_flt, 0, 0)
call plcol0(2)
call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg1(1:nptsx), yg1(1:nptsy))
call plstyl( (/1500/), (/1500/) )
call plcol0(3)
call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg1(1:nptsx), yg1(1:nptsy))
call plstyl( (/integer ::/), (/integer ::/) )
call plcol0(1)
call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')
! Plot using 2d coordinate transform
call plenv(-1.0_pl_test_flt, 1.0_pl_test_flt, -1.0_pl_test_flt, 1.0_pl_test_flt, 0, 0)
call plcol0(2)
call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg2(1:nptsx,1:nptsy), yg2(1:nptsx,1:nptsy))
call plstyl( (/1500/), (/1500/) )
call plcol0(3)
call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg2(1:nptsx,1:nptsy), yg2(1:nptsx,1:nptsy))
call plstyl( (/integer ::/), (/integer ::/) )
call plcol0(1)
call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')
call polar()
call potential()
call plend
contains
!----------------------------------------------------------------------------
! Auxiliary function to compute the coordinates
elemental real(kind=pl_test_flt) function coord_function( coord, factor )
real(kind=pl_test_flt), intent(in) :: coord
real(kind=pl_test_flt), intent(in) :: factor
real(kind=pl_test_flt) :: tcoord
tcoord = -1.0_pl_test_flt + coord * 2.0_pl_test_flt
coord_function = tcoord + factor*cos(0.5_pl_test_flt*PI*tcoord)
end function coord_function
! Callback function that relies on global tr.
subroutine mypltr( x, y, xt, yt )
! These callback arguments must have exactly these attributes.
real(kind=pl_test_flt), intent(in) :: x, y
real(kind=pl_test_flt), intent(out) :: xt, yt
xt = tr(1) * x + tr(2) * y + tr(3)
yt = tr(4) * x + tr(5) * y + tr(6)
end subroutine mypltr
! Callback function that uses data argument to pass tr information.
subroutine mypltr_data( x, y, xt, yt, data )
! These callback arguments must have exactly these attributes.
real(kind=pl_test_flt), intent(in) :: x, y
real(kind=pl_test_flt), intent(out) :: xt, yt
type(c_ptr), intent(in) :: data
type(mypltr_data_type), pointer :: d
call c_f_pointer(data, d)
xt = d%tr_data(1) * x + d%tr_data(2) * y + d%tr_data(3)
yt = d%tr_data(4) * x + d%tr_data(5) * y + d%tr_data(6)
end subroutine mypltr_data
!----------------------------------------------------------------------------
! polar contour plot example.
subroutine polar()
integer, parameter :: PERIMETERPTS = 100
! xdim and ydim are the absolute static size of the 2D arrays.
! RPTS and THETAPTS are associated with the part of the
! 2D arrays that are defined.
integer, parameter :: xdim=99, RPTS = 40
integer, parameter :: ydim=100, THETAPTS = 40
integer, parameter :: NLEVEL=10
integer :: i,j
real(kind=pl_test_flt) :: xg(xdim, ydim), yg(xdim, ydim), &
z(xdim, ydim), px(PERIMETERPTS), py(PERIMETERPTS), &
lev(NLEVEL), r, theta, delta
call plenv(-1._pl_test_flt, 1._pl_test_flt, -1._pl_test_flt, 1._pl_test_flt, 0, -2)
call plcol0(1)
! perimeter.
delta = 2._pl_test_flt*PI/(PERIMETERPTS-1)
px = cos(delta*arange(PERIMETERPTS))
py = sin(delta*arange(PERIMETERPTS))
call plline(px, py)
! create data to be contoured.
do j = 1, THETAPTS
theta = (2._pl_test_flt*PI/real(THETAPTS-1,kind=pl_test_flt))*real(j-1,kind=pl_test_flt)
do i = 1, RPTS
r = (i-1)/real(RPTS-1,kind=pl_test_flt)
xg(i,j) = r*cos(theta)
yg(i,j) = r*sin(theta)
z(i,j) = r
enddo
enddo
! create contour values.
lev = 0.05_pl_test_flt + 0.10_pl_test_flt * arange(nlevel)
! plot the (polar) contours.
call plcol0(2)
call plcont(z, 1, RPTS, 1, THETAPTS, lev, xg, yg)
call plcol0(1)
call pllab('', '', 'Polar Contour Plot')
end subroutine polar
!----------------------------------------------------------------------------
! shielded potential contour plot example
subroutine potential()
integer :: i, j, nx, ny, kx, lx, ky, ly, &
nlevel, ilevgt, ilevlt, nlevlt, nlevgt, &
ncollin, ncolbox, ncollab, &
nxsub, nysub
real(kind=pl_test_flt) :: r, theta, rmax, x0, &
y0, xmin, xmax, eps, q1, d1, &
ymin, ymax, &
q1i, d1i, q2, d2, q2i, d2i, div1, div1i, div2, div2i, &
zmin, zmax, dz, xpmin, xpmax, ypmin, ypmax, &
xtick, ytick, delta
! xdim and ydim are the absolute static size of the 2D arrays.
! NCX and NCY are associated with the part of the
! 2D arrays that are defined.
integer, parameter :: xdim=99, NCX=40, ydim=100, NCY=64, NPLT=100
real(kind=pl_test_flt) :: z(xdim, ydim), ztmp(xdim, ydim+1)
real(kind=pl_test_flt) :: xg(xdim, ydim+1), yg(xdim, ydim+1), xtm(NPLT), ytm(NPLT)
real(kind=pl_test_flt) :: clevel(20)
character(len=8) :: xopt, yopt
nx = NCX
ny = NCY
kx = 1
lx = nx
ky = 1
ly = ny
! Set up r-theta grids
! Tack on extra cell in theta to handle periodicity.
do i = 1, nx
r = i - 0.5_pl_test_flt
do j = 1, ny
theta = TWOPI/real(ny-1,kind=pl_test_flt) * (j-0.5_pl_test_flt)
xg(i,j) = r * cos(theta)
yg(i,j) = r * sin(theta)
enddo
xg(i, ny+1) = xg(i, 1)
yg(i, ny+1) = yg(i, 1)
enddo
xmax = maxval( xg(1:nx,1:ny) )
xmin = minval( xg(1:nx,1:ny) )
ymax = maxval( yg(1:nx,1:ny) )
ymin = minval( yg(1:nx,1:ny) )
rmax = r
x0 = (xmin + xmax)/2._pl_test_flt
y0 = (ymin + ymax)/2._pl_test_flt
! Potential inside a conducting cylinder (or sphere) by method of images.
! Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
! Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
! Also put in smoothing term at small distances.
eps = 2._pl_test_flt
q1 = 1._pl_test_flt
d1 = r/4._pl_test_flt
q1i = - q1*r/d1
d1i = r**2/d1
q2 = -1._pl_test_flt
d2 = r/4._pl_test_flt
q2i = - q2*r/d2
d2i = r**2/d2
do i = 1, nx
do j = 1, ny
div1 = sqrt((xg(i,j)-d1)**2 + (yg(i,j)-d1)**2 + eps**2)
div1i = sqrt((xg(i,j)-d1i)**2 + (yg(i,j)-d1i)**2 + eps**2)
div2 = sqrt((xg(i,j)-d2)**2 + (yg(i,j)+d2)**2 + eps**2)
div2i = sqrt((xg(i,j)-d2i)**2 + (yg(i,j)+d2i)**2 + eps**2)
z(i,j) = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
enddo
enddo
! Tack on extra cell in theta to handle periodicity.
ztmp(:,1:ny) = z
ztmp(:,ny+1:ny+1) = z(:,1:1)
zmax = maxval( z(1:nx,1:ny) )
zmin = minval( z(1:nx,1:ny) )
! Set up contour levels.
nlevel = 20
dz = abs(zmax - zmin)/real(nlevel,kind=pl_test_flt)
clevel(1:nlevel) = zmin + (arange(1,nlevel+1) - 0.5_pl_test_flt) * dz
! Split contours into two parts, z > 0, and z < 0.
! Dashed contours will be at levels 'ilevlt' through 'ilevlt+nlevlt'.
! Solid contours will be at levels 'ilevgt' through 'ilevgt+nlevgt'.
!
! Since the array clevel is ordered, we can find the level
! where the values become positive by counting the non-positive
! elements
ilevlt = 1
nlevlt = count( clevel(1:nlevel) <= 0.0_pl_test_flt )
ilevgt = ilevlt + nlevlt
nlevgt = nlevel - nlevlt
! Advance graphics frame and get ready to plot.
ncollin = 11
ncolbox = 1
ncollab = 2
call pladv(0)
call plcol0(ncolbox)
! Scale window to user coordinates.
! Make a bit larger so the boundary doesn't get clipped.
eps = 0.05_pl_test_flt
xpmin = xmin - abs(xmin)*eps
xpmax = xmax + abs(xmax)*eps
ypmin = ymin - abs(ymin)*eps
ypmax = ymax + abs(ymax)*eps
call plvpas(0.1_pl_test_flt, 0.9_pl_test_flt, 0.1_pl_test_flt, 0.9_pl_test_flt, 1.0_pl_test_flt )
call plwind(xpmin, xpmax, ypmin, ypmax)
xopt = ' '
yopt = ' '
xtick = 0._pl_test_flt
nxsub = 0
ytick = 0._pl_test_flt
nysub = 0
call plbox(xopt, xtick, nxsub, yopt, ytick, nysub)
! Call plotter once for z < 0 (dashed), once for z > 0 (solid lines).
call plcol0(ncollin)
if (nlevlt > 0) then
call pllsty(2)
call plcont(ztmp, kx, lx, ky, ly+1, &
clevel(ilevlt:nlevlt), xg, yg)
endif
if (nlevgt > 0) then
call pllsty(1)
call plcont(ztmp, kx, lx, ky, ly+1, &
clevel(ilevgt:ilevgt-1+nlevgt), xg, yg)
endif
! Draw boundary.
delta = TWOPI/(NPLT-1)
xtm = x0 + rmax * cos(delta*arange(NPLT))
ytm = y0 + rmax * sin(delta*arange(NPLT))
call plcol0(ncolbox)
call plline(xtm, ytm)
call plcol0(ncollab)
call pllab('', '', 'Shielded potential of charges in a conducting sphere')
end subroutine potential
end program x09f
|