File: x27f.f90

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (272 lines) | stat: -rw-r--r-- 9,065 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
!  Drawing "spirograph" curves - epitrochoids, cycolids, roulettes
!
!  Copyright (C) 2007  Arjen Markus
!  Copyright (C) 2008  Andrew Ross
!  Copyright (C) 2008-2016 Alan W. Irwin
!
! This file is part of PLplot.
!
! PLplot is free software; you can redistribute it and/or modify
! it under the terms of the GNU Library General Public License as published
! by the Free Software Foundation; either version 2 of the License, or
! (at your option) any later version.
!
! PLplot is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
! GNU Library General Public License for more details.
!
! You should have received a copy of the GNU Library General Public License
! along with PLplot; if not, write to the Free Software
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
!
!     N.B. the pl_test_flt parameter used in this code is only
!     provided by the plplot module to allow convenient developer
!     testing of either kind(1.0) or kind(1.0d0) floating-point
!     precision regardless of the floating-point precision of the
!     PLplot C libraries.  We do not guarantee the value of this test
!     parameter so it should not be used by users, and instead user
!     code should replace the pl_test_flt parameter by whatever
!     kind(1.0) or kind(1.0d0) precision is most convenient for them.
!     For further details on floating-point precision issues please
!     consult README_precision in this directory.
!
!

! --------------------------------------------------------------------------
! main
!
! Generates two kinds of plots:
!   - construction of a cycloid (animated)
!   - series of epitrochoids and hypotrochoids
! --------------------------------------------------------------------------

program x27f

    use plplot
    implicit none

    integer i, j, fill

    real(kind=pl_test_flt) params(4,9)

    ! R, r, p, N
    ! R and r should be integers to give correct termination of the
    integer :: plparseopts_rc
    ! angle loop using gcd.
    ! N.B. N is just a place holder since it is no longer used
    ! (because we now have proper termination of the angle loop).
    data ( ( params(i,j) ,i=1,4) ,j=1,9 ) / &
           21.0_pl_test_flt,  7.0_pl_test_flt,  7.0_pl_test_flt,  3.0_pl_test_flt, &
           21.0_pl_test_flt,  7.0_pl_test_flt, 10.0_pl_test_flt,  3.0_pl_test_flt, &
           21.0_pl_test_flt, -7.0_pl_test_flt, 10.0_pl_test_flt,  3.0_pl_test_flt, &
           20.0_pl_test_flt,  3.0_pl_test_flt,  7.0_pl_test_flt, 20.0_pl_test_flt, &
           20.0_pl_test_flt,  3.0_pl_test_flt, 10.0_pl_test_flt, 20.0_pl_test_flt, &
           20.0_pl_test_flt, -3.0_pl_test_flt, 10.0_pl_test_flt, 20.0_pl_test_flt, &
           20.0_pl_test_flt, 13.0_pl_test_flt,  7.0_pl_test_flt, 20.0_pl_test_flt, &
           20.0_pl_test_flt, 13.0_pl_test_flt, 20.0_pl_test_flt, 20.0_pl_test_flt, &
           20.0_pl_test_flt,-13.0_pl_test_flt, 20.0_pl_test_flt, 20.0_pl_test_flt/

    !  plplot initialization

    !  Parse and process command line arguments

    plparseopts_rc = plparseopts(PL_PARSE_FULL)
    if(plparseopts_rc .ne. 0) stop "plparseopts error"

    !  Initialize plplot

    call plinit()

    !  Illustrate the construction of a cycloid

    call cycloid()

    !  Loop over the various curves
    !  First an overview, then all curves one by one

    call plssub(3, 3)

    fill = 0
    do i = 1,9
        call pladv(0)
        call plvpor( 0.0_pl_test_flt, 1.0_pl_test_flt, 0.0_pl_test_flt, 1.0_pl_test_flt )
        call spiro( params(1,i), fill )
    end do
    call pladv(0)
    call plssub(1, 1)

    do i = 1,9
        call pladv(0)
        call plvpor( 0.0_pl_test_flt, 1.0_pl_test_flt, 0.0_pl_test_flt, 1.0_pl_test_flt )
        call spiro( params(1,i), fill )
    end do

    ! fill the curves.
    fill = 1
    call pladv(0)
    call plssub(1, 1)

    do i = 1,9
        call pladv(0)
        call plvpor( 0.0_pl_test_flt, 1.0_pl_test_flt, 0.0_pl_test_flt, 1.0_pl_test_flt )
        call spiro( params(1,i), fill )
    end do

    ! Finally, an example to test out plarc capabilities
    call arcs()

    call plend()

contains

    ! --------------------------------------------------------------------------
    ! Calculate greatest common divisor following pseudo-code for the
    ! Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm

    integer function gcd (a,  b)
        use plplot
        implicit none
        integer a, b, t
        a = abs(a)
        b = abs(b)
        do while ( b .ne. 0 )
            t = b
            b = mod (a, b)
            a = t
        enddo
        gcd = a
    end function gcd

    !  ===============================================================

    subroutine cycloid

        !     TODO

    end subroutine cycloid

    !  ===============================================================

    subroutine spiro( params, fill )

        use plplot, double_PI => PL_PI
        implicit none

        real(kind=pl_test_flt), parameter :: PI = double_PI
        real(kind=pl_test_flt)      params(*)
        integer     NPNT
        parameter ( NPNT = 2000 )
        integer     n
        real(kind=pl_test_flt)      xcoord(NPNT+1)
        real(kind=pl_test_flt)      ycoord(NPNT+1)

        integer     windings
        integer     steps
        integer     i
        integer     fill
        real(kind=pl_test_flt)      phi
        real(kind=pl_test_flt)      phiw
        real(kind=pl_test_flt)      dphi
        real(kind=pl_test_flt)      xmin
        real(kind=pl_test_flt)      xmax
        real(kind=pl_test_flt)      xrange_adjust
        real(kind=pl_test_flt)      ymin
        real(kind=pl_test_flt)      ymax
        real(kind=pl_test_flt)      yrange_adjust

        ! Fill the coordinates

        ! Proper termination of the angle loop very near the beginning
        ! point, see
        ! http://mathforum.org/mathimages/index.php/Hypotrochoid.
        windings = int(abs(params(2))/gcd(int(params(1)), int(params(2))))
        steps    = NPNT/windings
        dphi     = 2.0_pl_test_flt*PI/real(steps,kind=pl_test_flt)

        n = windings*steps+1

        ! Initialize variables to prevent compiler warnings
        xmin = 0.0
        xmax = 0.0
        ymin = 0.0
        ymax = 0.0

        do i = 1,n
            phi       = real(i-1,kind=pl_test_flt) * dphi
            phiw      = (params(1)-params(2))/params(2)*phi
            xcoord(i) = (params(1)-params(2))*cos(phi)+params(3)*cos(phiw)
            ycoord(i) = (params(1)-params(2))*sin(phi)-params(3)*sin(phiw)

            if (i.eq.1) then
                xmin = xcoord(1)
                xmax = xcoord(1)
                ymin = ycoord(1)
                ymax = ycoord(1)
            endif
            if ( xmin > xcoord(i) ) xmin = xcoord(i)
            if ( xmax < xcoord(i) ) xmax = xcoord(i)
            if ( ymin > ycoord(i) ) ymin = ycoord(i)
            if ( ymax < ycoord(i) ) ymax = ycoord(i)
        end do

        xrange_adjust = 0.15_pl_test_flt * (xmax - xmin)
        xmin = xmin - xrange_adjust
        xmax = xmax + xrange_adjust
        yrange_adjust = 0.15_pl_test_flt * (ymax - ymin)
        ymin = ymin - yrange_adjust
        ymax = ymax + yrange_adjust

        call plwind( xmin, xmax, ymin, ymax )

        call plcol0(1)
        if ( fill.eq.1) then
            call plfill(xcoord(1:n), ycoord(1:n) )
        else
            call plline(xcoord(1:n), ycoord(1:n) )
        endif

    end subroutine spiro

    !  ===============================================================

    subroutine arcs( )

        use plplot, double_PI => PL_PI
        implicit none

        real(kind=pl_test_flt), parameter :: PI = double_PI
        integer NSEG
        parameter ( NSEG = 8 )
        integer i;
        real (kind=pl_test_flt) theta, dtheta
        real (kind=pl_test_flt) a, b

        theta = 0.0_pl_test_flt
        dtheta = 360.0_pl_test_flt / real(NSEG,kind=pl_test_flt)
        call plenv( -10.0_pl_test_flt, 10.0_pl_test_flt, -10.0_pl_test_flt, 10.0_pl_test_flt, 1, 0 )

        ! Plot segments of circle in different colors
        do i = 0, NSEG-1
            call plcol0( mod(i,2) + 1 )
            call plarc(0.0_pl_test_flt, 0.0_pl_test_flt, 8.0_pl_test_flt, 8.0_pl_test_flt, theta, &
                   theta + dtheta, 0.0_pl_test_flt, .false.)
            theta = theta + dtheta
        enddo

        ! Draw several filled ellipses inside the circle at different
        ! angles.
        a = 3.0_pl_test_flt
        b = a * tan( (dtheta/180.0_pl_test_flt*PI)/2.0_pl_test_flt )
        theta = dtheta/2.0_pl_test_flt
        do i = 0, NSEG-1
            call plcol0( 2 - mod(i,2) )
            call plarc( a*cos(theta/180.0_pl_test_flt*PI), &
                   a*sin(theta/180.0_pl_test_flt*PI), &
                   a, b, 0.0_pl_test_flt, 360.0_pl_test_flt, theta, .true.)
            theta = theta + dtheta;
        enddo

    end subroutine arcs
end program x27f