File: x29f.f90

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (431 lines) | stat: -rw-r--r-- 18,100 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
!   Sample plots using date / time formatting for axes
!
!   Copyright (C) 2008  Andrew Ross
!   Copyright (C) 2008-2016 Alan W. Irwin
!
!   This file is part of PLplot.
!
!   PLplot is free software; you can redistribute it and/or modify
!   it under the terms of the GNU Library General Public License as
!   published by the Free Software Foundation; either version 2 of the
!   License, or (at your option) any later version.
!
!   PLplot is distributed in the hope that it will be useful,
!   but WITHOUT ANY WARRANTY; without even the implied warranty of
!   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!   GNU Library General Public License for more details.
!
!   You should have received a copy of the GNU Library General Public
!   License along with PLplot; if not, write to the Free Software
!   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
!
!     N.B. the pl_test_flt parameter used in this code is only
!     provided by the plplot module to allow convenient developer
!     testing of either kind(1.0) or kind(1.0d0) floating-point
!     precision regardless of the floating-point precision of the
!     PLplot C libraries.  We do not guarantee the value of this test
!     parameter so it should not be used by users, and instead user
!     code should replace the pl_test_flt parameter by whatever
!     kind(1.0) or kind(1.0d0) precision is most convenient for them.
!     For further details on floating-point precision issues please
!     consult README_precision in this directory.
!

program x29f
    use plplot
    implicit none

    integer, parameter :: double = kind(1.0d0)
    integer :: plparseopts_rc

    real(kind=double), parameter :: PI = PL_PI

    real(kind=pl_test_flt), dimension(365) :: x, y, xerr1, xerr2, yerr1, yerr2

    plparseopts_rc = plparseopts(PL_PARSE_FULL)
    if(plparseopts_rc .ne. 0) stop "plparseopts error"

    call plinit()

    !  This is the ASCII value for character @
    call plsesc(64)

    call plot1()
    call plot2()
    call plot3()
    call plot4()

    call plend()

contains


    !====================================================================
    !
    !     Plot a model diurnal cycle of temperature

    subroutine plot1()


        integer :: i, npts
        real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax

        parameter(npts = 73)
        parameter(xmin = 0.0_pl_test_flt)
        parameter(xmax = 60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt)
        parameter(ymin = 10.0_pl_test_flt)
        parameter(ymax = 20.0_pl_test_flt)

        do i = 1,npts
            x(i) = xmax*(real(i-1,kind=pl_test_flt)/real(npts,kind=pl_test_flt))
            y(i) = 15.0_pl_test_flt - 5.0_pl_test_flt* &
                   cos(2.0_pl_test_flt*PI*real(i-1,kind=pl_test_flt)/ &
                   real(npts,kind=pl_test_flt))
            !     Set x error bars to +/- 5 minute
            xerr1(i) = x(i)-60.0_pl_test_flt*5.0_pl_test_flt
            xerr2(i) = x(i)+60.0_pl_test_flt*5.0_pl_test_flt
            !     Set y error bars to +/- 0.1 deg C
            yerr1(i) = y(i)-0.1_pl_test_flt
            yerr2(i) = y(i)+0.1_pl_test_flt
        enddo

        call pladv(0)

        !     Rescale major ticks marks by 0.5
        call plsmaj(0.0_pl_test_flt,0.5_pl_test_flt)
        !     Rescale minor ticks and error bar marks by 0.5
        call plsmin(0.0_pl_test_flt,0.5_pl_test_flt)

        call plvsta()
        call plwind(xmin, xmax, ymin, ymax)

        !     Draw a box with ticks spaced every 3 hour in X and 1 degree C in Y.
        call plcol0(1)
        !     Set time format to be hours:minutes
        call pltimefmt("%H:%M")
        call plbox("bcnstd", 3.0_pl_test_flt*60.0_pl_test_flt*60.0_pl_test_flt, 3, "bcnstv", &
               1.0_pl_test_flt, 5)

        call plcol0(3)
        call pllab("Time (hours:mins)", "Temperature (degC)", &
               "@frPLplot Example 29 - Daily temperature")

        call plcol0(4)

        call plline(x(1:npts), y(1:npts))
        call plcol0(2)
        call plerrx(xerr1(1:npts), xerr2(1:npts), y(1:npts))
        call plcol0(3)
        call plerry(x(1:npts), yerr1(1:npts), yerr2(1:npts))

        !     Rescale major / minor tick marks back to default
        call plsmin(0.0_pl_test_flt,1.0_pl_test_flt)
        call plsmaj(0.0_pl_test_flt,1.0_pl_test_flt)

    end subroutine plot1

    !
    !     Plot the number of hours of daylight as a function of day for a year
    !
    subroutine plot2()

        integer ::  j, npts
        real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax
        real(kind=pl_test_flt) :: lat, p, d


        ! Latitude for London
        parameter (lat = 51.5_pl_test_flt)

        parameter (npts = 365)

        parameter(xmin = 0.0_pl_test_flt)
        parameter(xmax = npts*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt)
        parameter(ymin = 0)
        parameter(ymax = 24)

        !     Formula for hours of daylight from
        !     "A Model Comparison for Daylength as a Function of Latitude and
        !     Day of the Year", 1995, Ecological Modelling, 80, pp 87-95.
        do j=1,npts
            x(j) = (j-1)*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
            p = asin(0.39795_pl_test_flt*cos(0.2163108_pl_test_flt + 2.0_pl_test_flt* &
                   atan(0.9671396_pl_test_flt*tan(0.00860_pl_test_flt*(j-187)))))
            d = 24.0_pl_test_flt - (24.0_pl_test_flt/PI)* &
                   acos( (sin(0.8333_pl_test_flt*PI/180.0_pl_test_flt) + &
                   sin(lat*PI/180.0_pl_test_flt)*sin(p)) / (cos(lat*PI/180.0_pl_test_flt)* &
                   cos(p)) )
            y(j) = d
        enddo

        call plcol0(1)
        !     Set time format to be abbreviated month name followed by day of month
        call pltimefmt("%b %d")
        call plprec(1,1)
        call plenv(xmin, xmax, ymin, ymax, 0, 40)

        call plcol0(3)
        call pllab("Date", "Hours of daylight", &
               "@frPLplot Example 29 - Hours of daylight at 51.5N")

        call plcol0(4)

        call plline(x, y)

        call plprec(0,0)

    end subroutine plot2

    !
    !
    !
    subroutine plot3()

        integer :: i, npts
        real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax
        integer :: tstart

        parameter (npts = 62)

        !     number of seconds elapsed since the Unix epoch (1970-01-01, UTC) for
        !     2005-12-01, UTC.  This is the same result as the Python
        !     calendar.timegm((2005,12,1,0,0,0)) result or the Linux C timegm
        !     result corresponding to 2005-12-01.
        tstart = 1133395200

        xmin = real(tstart,kind=pl_test_flt)
        xmax = xmin + npts*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
        ymin = 0.0_pl_test_flt
        ymax = 5.0_pl_test_flt

        do i=1,npts
            x(i) = xmin + real(i-1,kind=pl_test_flt)*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
            y(i) = 1.0_pl_test_flt + &
                   sin( 2.0_pl_test_flt*PI*real(i-1,kind=pl_test_flt)/7.0_pl_test_flt) + &
                   exp( real(min(i-1,npts+1-i),kind=pl_test_flt) / 31.0_pl_test_flt)
        enddo
        call pladv(0)

        call plvsta()
        call plwind(xmin, xmax, ymin, ymax)

        call plcol0(1)
        !     Set time format to be ISO 8601 standard YYYY-MM-DD. Note that this is
        !     equivalent to %f for C99 compliant implementations of strftime.
        call pltimefmt("%Y-%m-%d")
        !     Draw a box with ticks spaced every 14 days in X and 1 hour in Y.
        call plbox("bcnstd", 14.0_pl_test_flt*24.0_pl_test_flt*60.0_pl_test_flt*60.0_pl_test_flt,14, &
               "bcnstv", 1.0_pl_test_flt, 4)

        call plcol0(3)
        call pllab("Date", "Hours of television watched", &
               "@frPLplot Example 29 - Hours of television watched in " // &
               "Dec 2005 / Jan 2006")

        call plcol0(4)

        call plssym(0.0_pl_test_flt, 0.5_pl_test_flt)
        call plpoin(x(1:npts), y(1:npts), 2)
        call plline(x(1:npts), y(1:npts))

    end subroutine plot3

    !
    !
    !
    subroutine plot4()
        !     TAI-UTC (seconds) as a function of time.

        real(kind=pl_test_flt) :: scale
        real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax, xlabel_step
        integer :: k, npts = 0, i
        logical :: if_TAI_time_format = .false.
        character(len=10) :: time_format
        character(len=100) :: title_suffix
        character(len=100) :: xtitle
        character(len=100) :: title
        real(kind=pl_test_flt) :: x(1001), y(1001)
        integer :: epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min
        real(kind=pl_test_flt) :: epoch_sec
        integer :: tai_year, tai_month, tai_day, tai_hour, tai_min
        real(kind=pl_test_flt) :: tai_sec, tai
        integer :: utc_year, utc_month, utc_day, utc_hour, utc_min
        real(kind=pl_test_flt) :: utc_sec, utc

        ! Continuous time unit is Besselian years from whatever epoch is
        ! chosen below.  Could change to seconds (or days) from the
        ! epoch, but then would have to adjust xlabel_step below.
        scale = 365.242198781_pl_test_flt
        ! MJD epoch (see <https://en.wikipedia.org/wiki/Julian_day>).
        ! This is only set for illustrative purposes, and is overwritten
        ! below for the time-representation reasons given in the
        ! discussion below.
        epoch_year  = 1858
        epoch_month = 11
        epoch_day   = 17
        epoch_hour  = 0
        epoch_min   = 0
        epoch_sec   = 0._pl_test_flt
        ! To illustrate the time-representation issues of using the
        ! MJD epoch, in 1985, MJD was roughly 46000 days which
        ! corresponds to 4e9 seconds.  Thus, for the case where
        ! pl_test_flt corresponds to double precision which can
        ! represent continuous time to roughly 16 decimal digits of
        ! precision, the time-representation error is roughly ~400
        ! nanoseconds.  Therefore the MJD epoch would be acceptable
        ! for the plots below when pl_test_flt corresponds to double
        ! precision.  However, that epoch is obviously not acceptable
        ! for the case where pl_test_flt corresponds to single
        ! precision which can represent continuous time to only ~7
        ! decimal digits of precision corresponding to a time
        ! representation error of 400 seconds (!)  in 1985.  For this
        ! reason, we do not use the MJD epoch below and instead choose
        ! the best epoch for each case to minimize time-representation
        ! issues.

        do k = 0,6
            if (k .eq. 0) then
                ! Choose midpoint to maximize time-representation precision.
                epoch_year  = 1985
                epoch_month = 0
                epoch_day   = 2
                epoch_hour  = 0
                epoch_min   = 0
                epoch_sec   = 0._pl_test_flt
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
                call plctime(1950,0,2,0,0,0._pl_test_flt,xmin)
                call plctime(2020,0,2,0,0,0._pl_test_flt,xmax)
                npts = 70*12 + 1
                ymin = 0.0_pl_test_flt
                ymax = 36.0_pl_test_flt
                time_format="%Y%"
                if_TAI_time_format = .true.
                title_suffix = "from 1950 to 2020"
                xtitle =  "Year"
                xlabel_step = 10.0_pl_test_flt
            elseif ((k .eq. 1) .or. (k .eq. 2)) then
                ! Choose midpoint to maximize time-representation precision.
                epoch_year  = 1961
                epoch_month = 7
                epoch_day   = 1
                epoch_hour  = 0
                epoch_min   = 0
                epoch_sec   = 1.64757_pl_test_flt
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
                call plctime(1961,7,1,0,0,1.64757_pl_test_flt-.20_pl_test_flt, xmin)
                call plctime(1961,7,1,0,0,1.64757_pl_test_flt+.20_pl_test_flt, xmax)
                npts = 1001
                ymin = 1.625_pl_test_flt
                ymax = 1.725_pl_test_flt
                time_format = "%S%2%"
                title_suffix = "near 1961-08-01 (TAI)"
                xlabel_step = 0.05_pl_test_flt/(scale*86400.0_pl_test_flt)
                if (k .eq. 1) then
                    if_TAI_time_format = .true.
                    xtitle = "Seconds (TAI)"
                else
                    if_TAI_time_format = .false.
                    xtitle = "Seconds (TAI) labelled with corresponding UTC"
                endif
            elseif ((k .eq. 3) .or. (k .eq. 4)) then
                ! Choose midpoint to maximize time-representation precision.
                epoch_year  = 1963
                epoch_month = 10
                epoch_day   = 1
                epoch_hour  = 0
                epoch_min   = 0
                epoch_sec   = 2.6972788_pl_test_flt
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
                call plctime(1963,10,1,0,0,2.6972788_pl_test_flt-.20_pl_test_flt, xmin)
                call plctime(1963,10,1,0,0,2.6972788_pl_test_flt+.20_pl_test_flt, xmax)
                npts = 1001
                ymin = 2.55_pl_test_flt
                ymax = 2.75_pl_test_flt
                time_format = "%S%2%"
                title_suffix = "near 1963-11-01 (TAI)"
                xlabel_step = 0.05_pl_test_flt/(scale*86400.0_pl_test_flt)
                if (k .eq. 3) then
                    if_TAI_time_format = .true.
                    xtitle = "Seconds (TAI)"
                else
                    if_TAI_time_format = .false.
                    xtitle = "Seconds (TAI) labelled with corresponding UTC"
                endif
            elseif ((k .eq. 5) .or. (k .eq. 6)) then
                ! Choose midpoint to maximize time-representation precision.
                epoch_year  = 2009
                epoch_month = 0
                epoch_day   = 1
                epoch_hour  = 0
                epoch_min   = 0
                epoch_sec   = 34._pl_test_flt
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
                call plctime(2009,0,1,0,0,34._pl_test_flt-5._pl_test_flt,xmin)
                call plctime(2009,0,1,0,0,34._pl_test_flt+5._pl_test_flt,xmax)
                npts = 1001
                ymin = 32.5_pl_test_flt
                ymax = 34.5_pl_test_flt
                time_format = "%S%2%"
                title_suffix = "near 2009-01-01 (TAI)"
                xlabel_step = 1._pl_test_flt/(scale*86400._pl_test_flt)
                if (k .eq. 5) then
                    if_TAI_time_format = .true.
                    xtitle = "Seconds (TAI)"
                else
                    if_TAI_time_format = .false.
                    xtitle = "Seconds (TAI) labelled with corresponding UTC"
                endif
            endif

            do i=0,npts-1
                x(i+1) = xmin + i*(xmax-xmin)/(real(npts-1,kind=pl_test_flt))
                tai = x(i+1)
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
                call plbtime(tai_year, tai_month, tai_day, tai_hour, &
                       tai_min, tai_sec, tai)
                ! Calculate residual using tai as the epoch to nearly maximize time-representation precision.
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
                ! Calculate continuous tai with new epoch.
                call plctime( tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec, tai)
                ! Calculate broken-down utc (with leap seconds inserted) from continuous tai with new epoch.
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 2, .true., &
                       tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
                call plbtime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, tai)
                ! Calculate continuous utc from broken-down utc using same epoch as for the continuous tai.
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
                call plctime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, utc)
                ! Convert residuals to seconds.
                y(i+1)=(tai-utc)*scale*86400._pl_test_flt
            enddo

            call pladv(0)
            call plvsta()
            call plwind(xmin, xmax, ymin, ymax)
            call plcol0(1)
            if (if_TAI_time_format) then
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
            else
                call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 2, .true., &
                       epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
            endif
            call pltimefmt(time_format)
            call plbox("bcnstd", xlabel_step, 0, "bcnstv", 0._pl_test_flt, 0)
            call plcol0(3)
            title = "@frPLplot Example 29 - TAI-UTC "// &
                   trim(title_suffix)
            call pllab(xtitle, "TAI-UTC (sec)", title)

            call plcol0(4)

            call plline(x(1:npts), y(1:npts))
        enddo
    end subroutine plot4
end program x29f