1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
! Sample plots using date / time formatting for axes
!
! Copyright (C) 2008 Andrew Ross
! Copyright (C) 2008-2016 Alan W. Irwin
!
! This file is part of PLplot.
!
! PLplot is free software; you can redistribute it and/or modify
! it under the terms of the GNU Library General Public License as
! published by the Free Software Foundation; either version 2 of the
! License, or (at your option) any later version.
!
! PLplot is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Library General Public License for more details.
!
! You should have received a copy of the GNU Library General Public
! License along with PLplot; if not, write to the Free Software
! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
!
! N.B. the pl_test_flt parameter used in this code is only
! provided by the plplot module to allow convenient developer
! testing of either kind(1.0) or kind(1.0d0) floating-point
! precision regardless of the floating-point precision of the
! PLplot C libraries. We do not guarantee the value of this test
! parameter so it should not be used by users, and instead user
! code should replace the pl_test_flt parameter by whatever
! kind(1.0) or kind(1.0d0) precision is most convenient for them.
! For further details on floating-point precision issues please
! consult README_precision in this directory.
!
program x29f
use plplot
implicit none
integer, parameter :: double = kind(1.0d0)
integer :: plparseopts_rc
real(kind=double), parameter :: PI = PL_PI
real(kind=pl_test_flt), dimension(365) :: x, y, xerr1, xerr2, yerr1, yerr2
plparseopts_rc = plparseopts(PL_PARSE_FULL)
if(plparseopts_rc .ne. 0) stop "plparseopts error"
call plinit()
! This is the ASCII value for character @
call plsesc(64)
call plot1()
call plot2()
call plot3()
call plot4()
call plend()
contains
!====================================================================
!
! Plot a model diurnal cycle of temperature
subroutine plot1()
integer :: i, npts
real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax
parameter(npts = 73)
parameter(xmin = 0.0_pl_test_flt)
parameter(xmax = 60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt)
parameter(ymin = 10.0_pl_test_flt)
parameter(ymax = 20.0_pl_test_flt)
do i = 1,npts
x(i) = xmax*(real(i-1,kind=pl_test_flt)/real(npts,kind=pl_test_flt))
y(i) = 15.0_pl_test_flt - 5.0_pl_test_flt* &
cos(2.0_pl_test_flt*PI*real(i-1,kind=pl_test_flt)/ &
real(npts,kind=pl_test_flt))
! Set x error bars to +/- 5 minute
xerr1(i) = x(i)-60.0_pl_test_flt*5.0_pl_test_flt
xerr2(i) = x(i)+60.0_pl_test_flt*5.0_pl_test_flt
! Set y error bars to +/- 0.1 deg C
yerr1(i) = y(i)-0.1_pl_test_flt
yerr2(i) = y(i)+0.1_pl_test_flt
enddo
call pladv(0)
! Rescale major ticks marks by 0.5
call plsmaj(0.0_pl_test_flt,0.5_pl_test_flt)
! Rescale minor ticks and error bar marks by 0.5
call plsmin(0.0_pl_test_flt,0.5_pl_test_flt)
call plvsta()
call plwind(xmin, xmax, ymin, ymax)
! Draw a box with ticks spaced every 3 hour in X and 1 degree C in Y.
call plcol0(1)
! Set time format to be hours:minutes
call pltimefmt("%H:%M")
call plbox("bcnstd", 3.0_pl_test_flt*60.0_pl_test_flt*60.0_pl_test_flt, 3, "bcnstv", &
1.0_pl_test_flt, 5)
call plcol0(3)
call pllab("Time (hours:mins)", "Temperature (degC)", &
"@frPLplot Example 29 - Daily temperature")
call plcol0(4)
call plline(x(1:npts), y(1:npts))
call plcol0(2)
call plerrx(xerr1(1:npts), xerr2(1:npts), y(1:npts))
call plcol0(3)
call plerry(x(1:npts), yerr1(1:npts), yerr2(1:npts))
! Rescale major / minor tick marks back to default
call plsmin(0.0_pl_test_flt,1.0_pl_test_flt)
call plsmaj(0.0_pl_test_flt,1.0_pl_test_flt)
end subroutine plot1
!
! Plot the number of hours of daylight as a function of day for a year
!
subroutine plot2()
integer :: j, npts
real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax
real(kind=pl_test_flt) :: lat, p, d
! Latitude for London
parameter (lat = 51.5_pl_test_flt)
parameter (npts = 365)
parameter(xmin = 0.0_pl_test_flt)
parameter(xmax = npts*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt)
parameter(ymin = 0)
parameter(ymax = 24)
! Formula for hours of daylight from
! "A Model Comparison for Daylength as a Function of Latitude and
! Day of the Year", 1995, Ecological Modelling, 80, pp 87-95.
do j=1,npts
x(j) = (j-1)*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
p = asin(0.39795_pl_test_flt*cos(0.2163108_pl_test_flt + 2.0_pl_test_flt* &
atan(0.9671396_pl_test_flt*tan(0.00860_pl_test_flt*(j-187)))))
d = 24.0_pl_test_flt - (24.0_pl_test_flt/PI)* &
acos( (sin(0.8333_pl_test_flt*PI/180.0_pl_test_flt) + &
sin(lat*PI/180.0_pl_test_flt)*sin(p)) / (cos(lat*PI/180.0_pl_test_flt)* &
cos(p)) )
y(j) = d
enddo
call plcol0(1)
! Set time format to be abbreviated month name followed by day of month
call pltimefmt("%b %d")
call plprec(1,1)
call plenv(xmin, xmax, ymin, ymax, 0, 40)
call plcol0(3)
call pllab("Date", "Hours of daylight", &
"@frPLplot Example 29 - Hours of daylight at 51.5N")
call plcol0(4)
call plline(x, y)
call plprec(0,0)
end subroutine plot2
!
!
!
subroutine plot3()
integer :: i, npts
real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax
integer :: tstart
parameter (npts = 62)
! number of seconds elapsed since the Unix epoch (1970-01-01, UTC) for
! 2005-12-01, UTC. This is the same result as the Python
! calendar.timegm((2005,12,1,0,0,0)) result or the Linux C timegm
! result corresponding to 2005-12-01.
tstart = 1133395200
xmin = real(tstart,kind=pl_test_flt)
xmax = xmin + npts*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
ymin = 0.0_pl_test_flt
ymax = 5.0_pl_test_flt
do i=1,npts
x(i) = xmin + real(i-1,kind=pl_test_flt)*60.0_pl_test_flt*60.0_pl_test_flt*24.0_pl_test_flt
y(i) = 1.0_pl_test_flt + &
sin( 2.0_pl_test_flt*PI*real(i-1,kind=pl_test_flt)/7.0_pl_test_flt) + &
exp( real(min(i-1,npts+1-i),kind=pl_test_flt) / 31.0_pl_test_flt)
enddo
call pladv(0)
call plvsta()
call plwind(xmin, xmax, ymin, ymax)
call plcol0(1)
! Set time format to be ISO 8601 standard YYYY-MM-DD. Note that this is
! equivalent to %f for C99 compliant implementations of strftime.
call pltimefmt("%Y-%m-%d")
! Draw a box with ticks spaced every 14 days in X and 1 hour in Y.
call plbox("bcnstd", 14.0_pl_test_flt*24.0_pl_test_flt*60.0_pl_test_flt*60.0_pl_test_flt,14, &
"bcnstv", 1.0_pl_test_flt, 4)
call plcol0(3)
call pllab("Date", "Hours of television watched", &
"@frPLplot Example 29 - Hours of television watched in " // &
"Dec 2005 / Jan 2006")
call plcol0(4)
call plssym(0.0_pl_test_flt, 0.5_pl_test_flt)
call plpoin(x(1:npts), y(1:npts), 2)
call plline(x(1:npts), y(1:npts))
end subroutine plot3
!
!
!
subroutine plot4()
! TAI-UTC (seconds) as a function of time.
real(kind=pl_test_flt) :: scale
real(kind=pl_test_flt) :: xmin, xmax, ymin, ymax, xlabel_step
integer :: k, npts = 0, i
logical :: if_TAI_time_format = .false.
character(len=10) :: time_format
character(len=100) :: title_suffix
character(len=100) :: xtitle
character(len=100) :: title
real(kind=pl_test_flt) :: x(1001), y(1001)
integer :: epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min
real(kind=pl_test_flt) :: epoch_sec
integer :: tai_year, tai_month, tai_day, tai_hour, tai_min
real(kind=pl_test_flt) :: tai_sec, tai
integer :: utc_year, utc_month, utc_day, utc_hour, utc_min
real(kind=pl_test_flt) :: utc_sec, utc
! Continuous time unit is Besselian years from whatever epoch is
! chosen below. Could change to seconds (or days) from the
! epoch, but then would have to adjust xlabel_step below.
scale = 365.242198781_pl_test_flt
! MJD epoch (see <https://en.wikipedia.org/wiki/Julian_day>).
! This is only set for illustrative purposes, and is overwritten
! below for the time-representation reasons given in the
! discussion below.
epoch_year = 1858
epoch_month = 11
epoch_day = 17
epoch_hour = 0
epoch_min = 0
epoch_sec = 0._pl_test_flt
! To illustrate the time-representation issues of using the
! MJD epoch, in 1985, MJD was roughly 46000 days which
! corresponds to 4e9 seconds. Thus, for the case where
! pl_test_flt corresponds to double precision which can
! represent continuous time to roughly 16 decimal digits of
! precision, the time-representation error is roughly ~400
! nanoseconds. Therefore the MJD epoch would be acceptable
! for the plots below when pl_test_flt corresponds to double
! precision. However, that epoch is obviously not acceptable
! for the case where pl_test_flt corresponds to single
! precision which can represent continuous time to only ~7
! decimal digits of precision corresponding to a time
! representation error of 400 seconds (!) in 1985. For this
! reason, we do not use the MJD epoch below and instead choose
! the best epoch for each case to minimize time-representation
! issues.
do k = 0,6
if (k .eq. 0) then
! Choose midpoint to maximize time-representation precision.
epoch_year = 1985
epoch_month = 0
epoch_day = 2
epoch_hour = 0
epoch_min = 0
epoch_sec = 0._pl_test_flt
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
call plctime(1950,0,2,0,0,0._pl_test_flt,xmin)
call plctime(2020,0,2,0,0,0._pl_test_flt,xmax)
npts = 70*12 + 1
ymin = 0.0_pl_test_flt
ymax = 36.0_pl_test_flt
time_format="%Y%"
if_TAI_time_format = .true.
title_suffix = "from 1950 to 2020"
xtitle = "Year"
xlabel_step = 10.0_pl_test_flt
elseif ((k .eq. 1) .or. (k .eq. 2)) then
! Choose midpoint to maximize time-representation precision.
epoch_year = 1961
epoch_month = 7
epoch_day = 1
epoch_hour = 0
epoch_min = 0
epoch_sec = 1.64757_pl_test_flt
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
call plctime(1961,7,1,0,0,1.64757_pl_test_flt-.20_pl_test_flt, xmin)
call plctime(1961,7,1,0,0,1.64757_pl_test_flt+.20_pl_test_flt, xmax)
npts = 1001
ymin = 1.625_pl_test_flt
ymax = 1.725_pl_test_flt
time_format = "%S%2%"
title_suffix = "near 1961-08-01 (TAI)"
xlabel_step = 0.05_pl_test_flt/(scale*86400.0_pl_test_flt)
if (k .eq. 1) then
if_TAI_time_format = .true.
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = .false.
xtitle = "Seconds (TAI) labelled with corresponding UTC"
endif
elseif ((k .eq. 3) .or. (k .eq. 4)) then
! Choose midpoint to maximize time-representation precision.
epoch_year = 1963
epoch_month = 10
epoch_day = 1
epoch_hour = 0
epoch_min = 0
epoch_sec = 2.6972788_pl_test_flt
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
call plctime(1963,10,1,0,0,2.6972788_pl_test_flt-.20_pl_test_flt, xmin)
call plctime(1963,10,1,0,0,2.6972788_pl_test_flt+.20_pl_test_flt, xmax)
npts = 1001
ymin = 2.55_pl_test_flt
ymax = 2.75_pl_test_flt
time_format = "%S%2%"
title_suffix = "near 1963-11-01 (TAI)"
xlabel_step = 0.05_pl_test_flt/(scale*86400.0_pl_test_flt)
if (k .eq. 3) then
if_TAI_time_format = .true.
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = .false.
xtitle = "Seconds (TAI) labelled with corresponding UTC"
endif
elseif ((k .eq. 5) .or. (k .eq. 6)) then
! Choose midpoint to maximize time-representation precision.
epoch_year = 2009
epoch_month = 0
epoch_day = 1
epoch_hour = 0
epoch_min = 0
epoch_sec = 34._pl_test_flt
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
call plctime(2009,0,1,0,0,34._pl_test_flt-5._pl_test_flt,xmin)
call plctime(2009,0,1,0,0,34._pl_test_flt+5._pl_test_flt,xmax)
npts = 1001
ymin = 32.5_pl_test_flt
ymax = 34.5_pl_test_flt
time_format = "%S%2%"
title_suffix = "near 2009-01-01 (TAI)"
xlabel_step = 1._pl_test_flt/(scale*86400._pl_test_flt)
if (k .eq. 5) then
if_TAI_time_format = .true.
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = .false.
xtitle = "Seconds (TAI) labelled with corresponding UTC"
endif
endif
do i=0,npts-1
x(i+1) = xmin + i*(xmax-xmin)/(real(npts-1,kind=pl_test_flt))
tai = x(i+1)
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
call plbtime(tai_year, tai_month, tai_day, tai_hour, &
tai_min, tai_sec, tai)
! Calculate residual using tai as the epoch to nearly maximize time-representation precision.
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
! Calculate continuous tai with new epoch.
call plctime( tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec, tai)
! Calculate broken-down utc (with leap seconds inserted) from continuous tai with new epoch.
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 2, .true., &
tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
call plbtime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, tai)
! Calculate continuous utc from broken-down utc using same epoch as for the continuous tai.
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
call plctime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec, utc)
! Convert residuals to seconds.
y(i+1)=(tai-utc)*scale*86400._pl_test_flt
enddo
call pladv(0)
call plvsta()
call plwind(xmin, xmax, ymin, ymax)
call plcol0(1)
if (if_TAI_time_format) then
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 0, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
else
call plconfigtime(scale, 0._pl_test_flt, 0._pl_test_flt, 2, .true., &
epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec )
endif
call pltimefmt(time_format)
call plbox("bcnstd", xlabel_step, 0, "bcnstv", 0._pl_test_flt, 0)
call plcol0(3)
title = "@frPLplot Example 29 - TAI-UTC "// &
trim(title_suffix)
call pllab(xtitle, "TAI-UTC (sec)", title)
call plcol0(4)
call plline(x(1:npts), y(1:npts))
enddo
end subroutine plot4
end program x29f
|