1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
//--------------------------------------------------------------------------
// Copyright (C) 2001 Geoffrey Furnish
// Copyright (C) 2001-2014 Alan W. Irwin
// Copyright (C) 2002 Maurice LeBrun
// Copyright (C) 2002 Joao Cardoso
// Copyright (C) 2004 Andrew Ross
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
// Implementation of PLplot example 8 in Java.
//--------------------------------------------------------------------------
package plplot.examples;
import plplot.core.*;
import static plplot.core.plplotjavacConstants.*;
import java.lang.Math;
class x08 {
// These values must be odd, for the middle
// of the index range to be an integer, and thus
// to correspond to the exact floating point centre
// of the sombrero.
static final int XPTS = 35;
static final int YPTS = 45;
PLStream pls = new PLStream();
static double alt[] = { 60.0, 40.0 };
static double az[] = { 30.0, -30.0 };
static String[] title =
{
"#frPLplot Example 8 - Alt=60, Az=30",
"#frPLplot Example 8 - Alt=40, Az=-30",
};
// cmap1_init1
// Initializes color map 1 in HLS space.
// Basic grayscale variation from half-dark (which makes more interesting
// looking plot compared to dark) to light.
// An interesting variation on this:
// s[1] = 1.0
void cmap1_init( int gray )
{
double [] i = new double[2];
double [] h = new double[2];
double [] l = new double[2];
double [] s = new double[2];
boolean [] rev = new boolean[2];
i[0] = 0.0; // left boundary
i[1] = 1.0; // right boundary
if ( gray == 1 )
{
h[0] = 0.0; // hue -- low: red (arbitrary if s=0)
h[1] = 0.0; // hue -- high: red (arbitrary if s=0)
l[0] = 0.5; // lightness -- low: half-dark
l[1] = 1.0; // lightness -- high: light
s[0] = 0.0; // minimum saturation
s[1] = 0.0; // minimum saturation
}
else
{
h[0] = 240; // blue -> green -> yellow ->
h[1] = 0; // -> red
l[0] = 0.6;
l[1] = 0.6;
s[0] = 0.8;
s[1] = 0.8;
}
rev[0] = false; // interpolate on front side of colour wheel.
rev[1] = false; // interpolate on front side of colour wheel.
pls.scmap1n( 256 );
pls.scmap1l( false, i, h, l, s, rev );
}
// Does a series of 3-d plots for a given data set, with different viewing
// options in each plot.
public static void main( String[] args )
{
new x08( args );
}
public x08( String[] args )
{
int i, j, k;
final int LEVELS = 10;
double[] x = new double[ XPTS ];
double[] y = new double[ YPTS ];
double[][] z = new double[XPTS][YPTS];
double clevel[] = new double[LEVELS];
double clev_null [] = new double[0];
double xx, yy, r;
double zmin = Double.MAX_VALUE, zmax = Double.MIN_VALUE;
int ifshade;
int indexxmin = 0;
int indexxmax = XPTS;
int[] indexymin = new int[XPTS];
int[] indexymax = new int[XPTS];
double[][] zlimited = new double[XPTS][YPTS];
double dx = 2. / ( XPTS - 1 );
double dy = 2. / ( YPTS - 1 );
// parameters of ellipse (in x, y index coordinates) that limits the data.
// x0, y0 correspond to the exact floating point centre of the index
// range.
double x0 = 0.5 * ( XPTS - 1 );
double a = 0.9 * x0;
double y0 = 0.5 * ( YPTS - 1 );
double b = 0.7 * y0;
double square_root;
// Parse and process command line arguments.
pls.parseopts( args, PL_PARSE_FULL | PL_PARSE_NOPROGRAM );
boolean rosen = false;
// Initialize plplot.
pls.init();
for ( i = 0; i < XPTS; i++ )
{
x[i] = -1. + dx * i;
if ( rosen )
x[i] *= 1.5;
}
for ( j = 0; j < YPTS; j++ )
{
y[j] = -1. + dy * j;
if ( rosen )
y[j] += 0.5;
}
for ( i = 0; i < XPTS; i++ )
{
xx = x[i];
for ( j = 0; j < YPTS; j++ )
{
yy = y[j];
if ( rosen )
{
z[i][j] = Math.pow( 1. - xx, 2. ) + 100 *
Math.pow( yy - Math.pow( xx, 2. ), 2. );
// The log argument might be zero for just the right grid.
if ( z[i][j] > 0. )
z[i][j] = Math.log( z[i][j] );
else
z[i][j] = -5.; // -MAXFLOAT would mess-up up the scale
}
else
{
r = Math.sqrt( xx * xx + yy * yy );
z[i][j] = Math.exp( -r * r ) * Math.cos( 2.0 * Math.PI * r );
}
if ( zmin > z[i][j] )
zmin = z[i][j];
if ( zmax < z[i][j] )
zmax = z[i][j];
}
}
for ( i = indexxmin; i < indexxmax; i++ )
{
square_root = Math.sqrt( 1. - Math.min( 1., Math.pow( ( i - x0 ) / a, 2. ) ) );
// Add 0.5 to find nearest integer and therefore preserve symmetry
// with regard to lower and upper bound of y range.
indexymin[i] = Math.max( 0, (int) ( 0.5 + y0 - b * square_root ) );
// indexymax calculated with the convention that it is 1
// greater than highest valid index.
indexymax[i] = Math.min( YPTS, 1 + (int) ( 0.5 + y0 + b * square_root ) );
for ( j = indexymin[i]; j < indexymax[i]; j++ )
zlimited[i][j] = z[i][j];
}
double step = ( zmax - zmin ) / ( LEVELS + 1 );
for ( i = 0; i < LEVELS; i++ )
clevel[i] = zmin + step * ( i + 1 );
pls.lightsource( 1., 1., 1. );
for ( k = 0; k < 2; k++ )
{
for ( ifshade = 0; ifshade < 5; ifshade++ )
{
pls.adv( 0 );
pls.vpor( 0.0, 1.0, 0.0, 0.9 );
pls.wind( -1.0, 1.0, -0.9, 1.1 );
pls.col0( 3 );
pls.mtex( "t", 1.0, 0.5, 0.5, title[k] );
pls.col0( 1 );
if ( rosen )
pls.w3d( 1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax,
alt[k], az[k] );
else
pls.w3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax,
alt[k], az[k] );
pls.box3( "bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0 );
pls.col0( 2 );
switch ( ifshade )
{
case 0: // diffuse light surface plot
cmap1_init( 1 );
pls.surf3d( x, y, z, 0, clev_null );
break;
case 1: // magnitude colored plot
cmap1_init( 0 );
pls.surf3d( x, y, z, MAG_COLOR, clev_null );
break;
case 2: // magnitude colored plot with faceted squares
cmap1_init( 0 );
pls.surf3d( x, y, z, MAG_COLOR | FACETED, clev_null );
break;
case 3: // magnitude colored plot with contours
cmap1_init( 0 );
pls.surf3d( x, y, z, MAG_COLOR | SURF_CONT | BASE_CONT, clevel );
break;
case 4: // magnitude colored plot with contours and index limits.
cmap1_init( 0 );
pls.surf3dl( x, y, zlimited, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, indexxmin, indexymin, indexymax );
}
}
}
pls.end();
}
}
//--------------------------------------------------------------------------
// End of x08.java
//--------------------------------------------------------------------------
|