1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
--[[
3-d plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2
-- return single bit (for OR)
function bit(x,b)
return ((x % 2^b) - (x % 2^(b-1)) > 0)
end
-- logic OR for number values
function lor(x,y)
result = 0
for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
return result
end
----------------------------------------------------------------------------
-- cmap1_init1
--
-- Initializes color map 1 in HLS space.
-- Basic grayscale variation from half-dark (which makes more interesting
-- looking plot compared to dark) to light.
-- An interesting variation on this:
-- s[1] = 1.0
----------------------------------------------------------------------------
function cmap1_init(gray)
i = { 0, 1 } -- left and right boundary
if gray ~= 0 then
h = { 0, 0 } -- hue -- low: red (arbitrary if s=0), high: red (arbitrary if s=0)
l = { 0.5, 1 } -- lightness -- low: half-dark, high: light
s = { 0, 0 } -- minimum saturation
else
h = { 240, 0 } -- blue -> green -> yellow -> red
l = { 0.6, 0.6 }
s = { 0.8, 0.8 }
end
pl.scmap1n(256)
pl.scmap1l(0, i, h, l, s)
end
----------------------------------------------------------------------------
-- main
--
-- Does a series of 3-d plots for a given data set, with different
-- viewing options in each plot.
----------------------------------------------------------------------------
-- These values must be odd, for the middle
-- of the index range to be an integer, and thus
-- to correspond to the exact floating point centre
-- of the sombrero.
XPTS = 35 -- Data points in x
YPTS = 45 -- Data points in y
LEVELS = 10
alt = { 60, 40 }
az = { 30, -30 }
title = {
"#frPLplot Example 8 - Alt=60, Az=30",
"#frPLplot Example 8 - Alt=40, Az=-30"
}
clevel = {}
nlevel = LEVELS
rosen = 0
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
-- Allocate data structures
x = {}
y = {}
z = {}
dx = 2. / ( XPTS - 1 )
dy = 2. / ( YPTS - 1 )
for i=1, XPTS do
x[i] = -1. + (i-1)*dx
if rosen~=0 then x[i]=x[i]*1.5 end
end
for j=1, YPTS do
y[j] = -1. + (j-1)*dy
if rosen~=0 then y[j]=y[j]+0.5 end
end
for i=1, XPTS do
xx = x[i]
z[i]= {}
for j=1, YPTS do
yy = y[j]
if rosen~=0 then
z[i][j] = (1-xx)^2 + 100*(yy-xx^2)^2
-- The log argument might be zero for just the right grid.
if z[i][j] > 0 then
z[i][j] = math.log(z[i][j])
else
z[i][j] = -5 -- MAXFLOAT would mess-up up the scale
end
else
r = math.sqrt(xx^2 + yy^2)
z[i][j] = math.exp(-r^2) * math.cos(2*math.pi*r)
end
end
end
zmax, zmin = pl.MinMax2dGrid(z)
step = (zmax-zmin)/(nlevel+1)
for i=1, nlevel do
clevel[i] = zmin + step + step*(i-1)
end
indexxmin = 0
indexxmax = XPTS
-- Temporary test values.
--indexxmin = 5
--indexxmax = XPTS-5
zlimited = {}
indexymin = {}
indexymax = {}
-- Parameters of ellipse that limits the data.
x0 = 0.5*(XPTS - 1)
a = 0.9*x0
y0 = 0.5*(YPTS - 1)
b = 0.7*y0
-- Lua calls to PLplot only work if every value
-- in a sequence is defined from index 1 to n.
-- So we do that especially for Lua below, but we
-- define zlimited to a very large value in the
-- region that should be ignored just to test that
-- it is really ignored.
-- These values should all be ignored in C because of the i index range,
-- but they have to be defined in Lua to get the correct extent of the arrays
-- passed to C.
for i = 1, indexxmin do
zlimited[i] = {}
indexymin[i] = 0
indexymax[i] = YPTS
for j = indexymin[i]+1, indexymax[i] do
zlimited[i][j] = 1.e300
end
end
--print("XPTS =", XPTS);
--print("x0 =", x0);
--print("a =", a);
--print("YPTS =", YPTS);
--print("y0 =", y0);
--print("b =", b);
for i = indexxmin+1, indexxmax do
zlimited[i] = {}
square_root = math.sqrt(1. - math.min(1., ((i - 1 - x0)/a)^2))
-- Add 0.5 to find nearest integer and therefore preserve symmetry
-- with regard to lower and upper bound of y range.
indexymin[i] = math.max(0, math.floor(0.5 + y0 - b*square_root))
-- indexymax calculated with the convention that it is 1
-- greater than highest valid index.
indexymax[i] = math.min(YPTS, 1 + math.floor(0.5 + y0 + b*square_root))
--print("i, b*square_root, indexymin[i], YPTS - indexymax[i] =", i, b*square_root, indexymin[i], YPTS - indexymax[i])
-- These values should all be ignored in C because of the j index range.
for j = 1, indexymin[i] do
zlimited[i][j] = 1.e300
end
-- Only define zlimited in a limited elliptical range.
for j = indexymin[i]+1, indexymax[i] do
zlimited[i][j] = z[i][j]
end
-- These values should all be ignored in C because of the j index range.
for j = indexymax[i]+1, YPTS do
zlimited[i][j] = 1.e300
end
end
-- In C indexxmax is defined by the extent of the
-- indexxymin and indexymax arrays so comment out that part
-- of the loop to not extend those arrays. Still extend
-- zlimited however so that it is consistent with length
-- of x and y.
for i = indexxmax+1, XPTS do
zlimited[i] = {}
-- indexymin[i] = 0
-- indexymax[i] = YPTS
for j = 1, YPTS do
zlimited[i][j] = 1.e300
end
end
pl.lightsource(1, 1, 1)
for k=1, 2 do
for ifshade = 1, 5 do
pl.adv(0)
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1, 1, -0.9, 1.1)
pl.col0(3)
pl.mtex("t", 1, 0.5, 0.5, title[k])
pl.col0(1)
if rosen~=0 then
pl.w3d(1, 1, 1, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k])
else
pl.w3d(1, 1, 1, -1, 1, -1, 1, zmin, zmax, alt[k], az[k])
end
pl.box3("bnstu", "x axis", 0, 0,
"bnstu", "y axis", 0, 0,
"bcdmnstuv", "z axis", 0, 0)
pl.col0(2)
if ifshade==1 then -- diffuse light surface plot
cmap1_init(1)
pl.surf3d(x, y, z, 0, clevel)
end
if ifshade==2 then -- magnitude colored plot
cmap1_init(0)
pl.surf3d(x, y, z, pl.MAG_COLOR, {})
end
if ifshade==3 then -- magnitude colored plot with faceted squares
cmap1_init(0)
pl.surf3d(x, y, z, lor(pl.MAG_COLOR, pl.FACETED), {})
end
if ifshade==4 then -- magnitude colored plot with contours
cmap1_init(0)
pl.surf3d(x, y, z, lor(lor(pl.MAG_COLOR, pl.SURF_CONT), pl.BASE_CONT), clevel)
end
if ifshade==5 then -- magnitude colored plot with contours and index limits
cmap1_init(0)
pl.surf3dl(x, y, zlimited, lor(lor(pl.MAG_COLOR, pl.SURF_CONT), pl.BASE_CONT), clevel, indexxmin, indexymin, indexymax)
end
end
end
-- Clean up
pl.plend()
|