File: x18.lua

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (145 lines) | stat: -rw-r--r-- 3,763 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
--[[
	3-d line and point plot demo.  Adapted from x08c.c.

  Copyright (C) 2008  Werner Smekal

  This file is part of PLplot.

  PLplot is free software you can redistribute it and/or modify
  it under the terms of the GNU Library General Public License as published
  by the Free Software Foundation either version 2 of the License, or
  (at your option) any later version.

  PLplot is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU Library General Public License for more details.

  You should have received a copy of the GNU Library General Public License
  along with PLplot if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]

-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")

function test_poly(k)
  draw= { { 1, 1, 1, 1 },
          { 1, 0, 1, 0 },
          { 0, 1, 0, 1 },
          { 1, 1, 0, 0 } }

  x = {}
  y = {}
  z = {}

  pl.adv(0)
  pl.vpor(0, 1, 0, 0.9)
  pl.wind(-1, 1, -0.9, 1.1)
  pl.col0(1)
  pl.w3d(1, 1, 1, -1, 1, -1, 1, -1, 1, alt[k], az[k])
  pl.box3("bnstu", "x axis", 0, 0,
          "bnstu", "y axis", 0, 0,
          "bcdmnstuv", "z axis", 0, 0)

  pl.col0(2)

  -- x = r sin(phi) cos(theta)
  -- y = r sin(phi) sin(theta)
  -- z = r cos(phi)
  -- r = 1 :=)

  for i=0, 19 do
    for j=0, 19 do
	    x[1] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*i/20 )
	    y[1] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*i/20 )
	    z[1] = math.cos( math.pi*j/20.1 )

	    x[2] = math.sin( math.pi*(j+1)/20.1 ) * math.cos( 2*math.pi*i/20 )
	    y[2] = math.sin( math.pi*(j+1)/20.1 ) * math.sin( 2*math.pi*i/20 )
	    z[2] = math.cos( math.pi*(j+1)/20.1 )

	    x[3] = math.sin( math.pi*(j+1)/20.1 ) * math.cos( 2*math.pi*(i+1)/20 )
	    y[3] = math.sin( math.pi*(j+1)/20.1 ) * math.sin( 2*math.pi*(i+1)/20 )
	    z[3] = math.cos( math.pi*(j+1)/20.1 )

	    x[4] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*(i+1)/20 )
	    y[4] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*(i+1)/20 )
	    z[4] = math.cos( math.pi*j/20.1 )

	    x[5] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*i/20 )
	    y[5] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*i/20 )
	    z[5] = math.cos( math.pi*j/20.1 )

	    pl.poly3( x, y, z, draw[k], 1 )
    end
  end

  pl.col0(3)
  pl.mtex("t", 1, 0.5, 0.5, "unit radius sphere" )
end


----------------------------------------------------------------------------
-- main
--
-- Does a series of 3-d plots for a given data set, with different
-- viewing options in each plot.
----------------------------------------------------------------------------

NPTS = 1000
opt = { 1, 0, 1, 0 }
alt = { 20, 35, 50, 65 }
az  = { 30, 40, 50, 60 }


-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)

-- Initialize plplot
pl.init()

for k=1, 4 do
	test_poly(k)
end

x = {}
y = {}
z = {}

-- From the mind of a sick and twisted physicist...
for i=1, NPTS do
  z[i] = -1 + 2*(i-1)/NPTS

  -- Pick one ...
  --	r  = 1 - (i-1) / NPTS
  r = z[i]

  x[i] = r * math.cos( 12*math.pi*(i-1)/NPTS )
  y[i] = r * math.sin( 12*math.pi*(i-1)/NPTS )
end

for k=1, 4 do
	pl.adv(0)
	pl.vpor(0, 1, 0, 0.9)
	pl.wind(-1, 1, -0.9, 1.1)
	pl.col0(1)
	pl.w3d(1, 1, 1, -1, 1, -1, 1, -1, 1, alt[k], az[k])
	pl.box3("bnstu", "x axis", 0, 0,
	        "bnstu", "y axis", 0, 0,
	        "bcdmnstuv", "z axis", 0, 0)

	pl.col0(2)

	if opt[k]~=0 then
		pl.line3( x, y, z )
	else
		-- U+22C5 DOT OPERATOR.
		pl.string3( x, y, z, "⋅" )
	end

	pl.col0(3)
	pl.mtex("t", 1.0, 0.5, 0.5, "#frPLplot Example 18 - Alt=" .. alt[k] .. ", Az=" .. az[k])
end

pl.plend()