File: x08.ml

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (211 lines) | stat: -rw-r--r-- 6,559 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
(*
        3-d plot demo.

   Copyright (C) 2004  Alan W. Irwin
   Copyright (C) 2004  Rafael Laboissiere
   Copyright (C) 2008  Hezekiah M. Carty

   This file is part of PLplot.

   PLplot is free software; you can redistribute it and/or modify
   it under the terms of the GNU Library General Public License as published
   by the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   PLplot is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with PLplot; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

*)

open Plplot

let pi = atan 1.0 *. 4.0

let xpts = 35               (* Data points in x *)
let ypts = 45               (* Data points in y *)

let alt = [|60.0; 40.0|]
let az = [|30.0; -30.0|]

let title =
  [|
    "#frPLplot Example 8 - Alt=60, Az=30";
    "#frPLplot Example 8 - Alt=40, Az=-30";
  |]

(*--------------------------------------------------------------------------*\
 * cmap1_init1
 *
 * Initializes color map 1 in HLS space.
 * Basic grayscale variation from half-dark (which makes more interesting
 * looking plot compared to dark) to light.
 * An interesting variation on this:
 *      s[1] = 1.0
\*--------------------------------------------------------------------------*)

let cmap1_init gray =
  let i = [|0.0; 1.0|] in (* left and right boundaries *)

  let h, l, s =
    if gray then (
      [|0.0; 0.0|], (* hue -- low: red (arbitrary if s=0) *)
                    (* hue -- high: red (arbitrary if s=0) *)
      [|0.5; 1.0|], (* lightness -- low: half-dark *)
                    (* lightness -- high: light *)
      [|0.0; 0.0|]  (* minimum saturation *)
                    (* minimum saturation *)
    )
    else (
      [|240.0; 0.0|], (* blue -> green -> yellow -> *)
                      (* -> red *)
      [|0.6; 0.6|],
      [|0.8; 0.8|]
    )
  in

  plscmap1n 256;
  plscmap1l false i h l s None;
  ()

let levels = 10

(*--------------------------------------------------------------------------*\
 * Does a series of 3-d plots for a given data set, with different
 * viewing options in each plot.
\*--------------------------------------------------------------------------*)
let () =
  let nlevel = levels in
  let rosen = false in

  (* Parse and process command line arguments *)
  plparseopts Sys.argv [PL_PARSE_FULL];

  (* Initialize plplot *)
  plinit ();

  (* Allocate data structures *)
  let z = Array.make_matrix xpts ypts 0.0 in
  (* initialize to large value to make sure index limits are working correctly *)
  let z_limited = Array.make_matrix xpts ypts 1.e30 in

  let x =
    Array.init xpts (
      fun i ->
        (float_of_int (i - (xpts / 2)) /. float_of_int (xpts / 2)) *.
          if rosen then
            1.5
          else
            1.0
    )
  in

  let y =
    Array.init ypts (
      fun i ->
        float_of_int (i - (ypts / 2)) /. float_of_int (ypts / 2) +.
          if rosen then
            0.5
          else
            0.0
    )
  in

  for i = 0 to xpts - 1 do
    let xx = x.(i) in
    for j = 0 to ypts - 1 do
      let yy = y.(j) in
      if rosen then (
        z.(i).(j) <- (1.0 -. xx)**2. +. 100. *. (yy -. xx**2.)**2.0;
        (* The log argument may be zero for just the right grid. *)
        if z.(i).(j) > 0.0 then
          z.(i).(j) <- log z.(i).(j)
        else
          z.(i).(j) <- -5. (* -MAXFLOAT would mess-up up the scale *)
      )
      else (
        let r = sqrt (xx *. xx +. yy *. yy) in
        z.(i).(j) <- exp (-.r *. r) *. cos (2.0 *. pi *. r)
      )
    done
  done;

  let indexxmin = 0 in
  let indexxmax = xpts in
  let indexymin = Array.make indexxmax 0 in
  let indexymax = Array.make indexxmax ypts in
  (* parameters of ellipse (in x, y index coordinates) that limits the data.
     x0, y0 correspond to the exact floating point centre of the index range. *)
  let x0 = 0.5 *. float_of_int ( xpts - 1 ) in
  let a = 0.9 *. x0 in
  let y0 = 0.5 *. float_of_int( ypts - 1 ) in
  let b = 0.7 *. y0 in

  for i = indexxmin to indexxmax - 1 do
    let square_root = sqrt ( 1. -. (min 1. ((( float_of_int i -. x0 ) /. a)**2.))) in
    (* Add 0.5 to find nearest integer and therefore preserve symmetry
       with regard to lower and upper bound of y range. *)
    indexymin.(i) <- max 0 (int_of_float (0.5 +. y0 -. b *. square_root));
    (* indexymax calculated with the convention that it is 1
       greater than highest valid index. *)
    indexymax.(i) <- min ypts (1 + int_of_float (0.5 +. y0 +. b *. square_root));
    for j = indexymin.(i) to indexymax.(i) - 1 do
      z_limited.(i).(j) <- z.(i).(j)
    done
  done;

  let zmax, zmin = plMinMax2dGrid z in
  let step = (zmax -. zmin) /. float_of_int (nlevel + 1) in
  let clevel =
    Array.init nlevel (fun i -> zmin +. step +. step *. float_of_int i)
  in

  pllightsource 1.0 1.0 1.0;

  for k = 0 to 1 do
    for ifshade = 0 to 4 do
      pladv 0;
      plvpor 0.0 1.0 0.0 0.9;
      plwind (-1.0) 1.0 (-0.9) 1.1;
      plcol0 3;
      plmtex "t" 1.0 0.5 0.5 title.(k);
      plcol0 1;
      if rosen then
        plw3d 1.0 1.0 1.0 (-1.5) 1.5 (-0.5) 1.5 zmin zmax alt.(k) az.(k)
      else
        plw3d 1.0 1.0 1.0 (-1.0) 1.0 (-1.0) 1.0 zmin zmax alt.(k) az.(k);

      plbox3 "bnstu" "x axis" 0.0 0
             "bnstu" "y axis" 0.0 0
             "bcdmnstuv" "z axis" 0.0 0;
      plcol0 2;

      match ifshade with

          0 -> (* diffuse light surface plot *)
            cmap1_init true;
            plsurf3d x y z  [PL_DIFFUSE] [||];
        | 1 -> (* magnitude colored plot *)
            cmap1_init false;
            plsurf3d x y z [PL_MAG_COLOR] [||];
        | 2 -> (* magnitude colored plot with faceted
                  squares *)
            cmap1_init false;
            plsurf3d x y z [PL_MAG_COLOR; PL_FACETED] [||];
        | 3 -> (* magnitude colored plot with contours and index limits*)
            cmap1_init false;
            plsurf3d x y z [PL_MAG_COLOR; PL_SURF_CONT; PL_BASE_CONT] clevel;
        | _ -> (* magnitude colored plot with contours *)
            cmap1_init false;
            plsurf3dl x y z [PL_MAG_COLOR; PL_SURF_CONT; PL_BASE_CONT] clevel indexxmin indexymin indexymax;
    done
  done;

  (* Clean up *)
  plend ();
  ()