File: x15.py

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (152 lines) | stat: -rw-r--r-- 4,799 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#  Copyright (C) 2001-2017 Alan W. Irwin

#  Shade plot demo.
#
#  This file is part of PLplot.
#
#  PLplot is free software; you can redistribute it and/or modify
#  it under the terms of the GNU Library General Public License as published
#  by the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  PLplot is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Library General Public License for more details.
#
#  You should have received a copy of the GNU Library General Public License
#  along with PLplot; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#

from numpy import *

XPTS = 35               # Data points in x
YPTS = 46               # Data points in y


def main(w):
# Does a variety of shade plots with discrete colours and patterns.

    # Do not fiddle with cmap1 since this example actually uses cmap0.
    # Furthermore, if you do fiddle with cmap1, it will screw up other
    # plots (unless you return to default cmap1 like is done with eighth
    # example.
    x = (arange(XPTS) - (XPTS // 2)) / float(XPTS // 2)
    y = ((arange(YPTS) - (YPTS // 2)) / float(YPTS // 2)) - 1.
    x.shape = (-1,1)
    z = x*x - y*y + (x - y)/(x*x+y*y + 0.1)
    x.shape = (-1,)
    zmin = min(z.flat)
    zmax = max(z.flat)

    plot1(w, z, zmin, zmax)
    plot2(w, z, zmin, zmax)
    plot3(w)

    # Restore defaults
    # Must be done independently because otherwise this changes output files
    # and destroys agreement with C examples.
    #w.plcol0(1)

def plot1(w, z, zmin, zmax):
# Illustrates a single shaded region

    w.pladv(0)
    w.plvpor(0.1, 0.9, 0.1, 0.9)
    w.plwind(-1.0, 1.0, -1.0, 1.0)

    shade_min = zmin + (zmax-zmin)*0.4
    shade_max = zmin + (zmax-zmin)*0.6
    sh_cmap = 0
    sh_color = 7
    sh_width = 2.
    min_color = 9
    min_width = 2.
    max_color = 2
    max_width = 2.

    w.plpsty(8)

    # Just use identity transform on indices of z mapped to -1, 1 range
    # in X and Y coordinates
    w.plshade( z, -1., 1., -1., 1.,
    shade_min, shade_max, sh_cmap, sh_color, sh_width,
    min_color, min_width, max_color, max_width, 1, None, None)

    w.plcol0(1)
    w.plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0)
    w.plcol0(2)
    w.pllab("distance", "altitude", "Bogon flux")

def plot2(w, z, zmin, zmax):
# Illustrates multiple adjacent shaded regions, using different fill
# patterns for each region.

    nlin = array( [1, 1, 1, 1, 1, 2, 2, 2, 2, 2] )
    inc = array( [ [450, 0], [-450, 0], [0, 0], [900, 0],
                 [300, 0], [450,-450], [0, 900], [0, 450],
                 [450, -450], [0, 900] ] )
    spa = array( [ [2000, 2000], [2000, 2000], [2000, 2000],
                 [2000, 2000], [2000, 2000], [2000, 2000],
                 [2000, 2000], [2000, 2000], [4000, 4000],
                 [4000, 2000] ] )

    w.pladv(0)
    w.plvpor(0.1, 0.9, 0.1, 0.9)
    w.plwind(-1.0, 1.0, -1.0, 1.0)

    sh_cmap = 0
    sh_width = 2.
    min_color = 0
    min_width = 0.
    max_color = 0
    max_width = 0.

    for i in range(10):
        shade_min = zmin + (zmax - zmin) * i / 10.0
        shade_max = zmin + (zmax - zmin) * (i +1) / 10.0
        sh_color = i+6
        n = nlin[i]
        w.plpat(inc[i][0:n], spa[i][0:n])

        # Just use identity transform on indices of z mapped to -1, 1 range
        # in X and Y coordinates
        w.plshade( z, -1., 1., -1., 1.,
        shade_min, shade_max, sh_cmap, sh_color, sh_width,
        min_color, min_width, max_color, max_width, 1, None, None)

    w.plcol0(1)
    w.plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0)
    w.plcol0(2)
    w.pllab("distance", "altitude", "Bogon flux")

def plot3(w):
# Illustrates shaded regions in 3d, using a different fill pattern for
# each region.
    xx = array( [ [-1.0, 1.0, 1.0, -1.0, -1.0],
                  [-1.0, 1.0, 1.0, -1.0, -1.0] ] )
    yy = array( [ [1.0, 1.0, 0.0, 0.0, 1.0],
                [-1.0, -1.0, 0.0, 0.0, -1.0] ] )
    zz = array( [ [0.0, 0.0, 1.0, 1.0, 0.0],
                  [0.0, 0.0, 1.0, 1.0, 0.0] ] )

    w.pladv(0)
    w.plvpor(0.1, 0.9, 0.1, 0.9)
    w.plwind(-1.0, 1.0, -1.0, 1.0)
    w.plw3d(1., 1., 1., -1.0, 1.0, -1.0, 1.0, 0.0, 1.5, 30, -40)

    # Plot using identity transform

    w.plcol0(1)
    w.plbox3("bntu", "X", 0.0, 0, "bntu", "Y", 0.0, 0, "bcdfntu", "Z", 0.5, 0)
    w.plcol0(2)
    w.pllab("","","3-d polygon filling")

    w.plcol0(3)
    w.plpsty(1)
    w.plline3(xx[0], yy[0], zz[0])
    w.plfill3(xx[0][0:4], yy[0][0:4], zz[0][0:4])
    w.plpsty(2)
    w.plline3(xx[1], yy[1], zz[1])
    w.plfill3(xx[1][0:4], yy[1][0:4], zz[1][0:4])