1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# Copyright (C) 2001-2017 Alan W. Irwin
# plshade demo, using color fill.
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#
from numpy import *
NS = 20
NX = 35
NY = 46
PERIMETERPTS = 100
NUM_AXES = 1
NUM_LABELS = 1
XSPA = 2./(NX-1)
YSPA = 2./(NY-1)
tr = array((XSPA, 0.0, -1.0, 0.0, YSPA, -1.0))
def mypltr(x, y, data):
result0 = data[0] * x + data[1] * y + data[2]
result1 = data[3] * x + data[4] * y + data[5]
return array((result0, result1))
def main(w):
fill_width = 2.
cont_color = 0
cont_width = 0.
n_axis_opts = NUM_AXES
axis_opts = zeros(NUM_AXES,"S100")
axis_opts[0] = "bcvtm"
num_values = zeros(NUM_AXES,"int");
values = reshape(zeros(NUM_AXES*(NS+1)),[NUM_AXES,NS+1])
axis_ticks = zeros(NUM_AXES)
axis_subticks = zeros(NUM_AXES,"int")
n_labels = NUM_LABELS
label_opts = zeros(NUM_LABELS,"int")
labels = zeros(NUM_LABELS,"S100")
label_opts[0] = w.PL_COLORBAR_LABEL_BOTTOM
labels[0] = "Magnitude"
# Set up data array
x = (arange(NX) - (NX//2)) / float(NX//2)
x.shape = (-1,1)
y = (arange(NY) - (NY//2)) / float(NY//2) - 1.
zz = -sin(7.*x) * cos(7.*y) + x*x - y*y
ww = -cos(7.*x) * sin(7.*y) + 2.*x*y
zmin = min(zz.flat)
zmax = max(zz.flat)
clevel = zmin + (zmax - zmin) * (arange(NS)+0.5)/NS
shedge = zmin + (zmax - zmin) * (arange(NS+1))/NS
# Build the identity transformation between grid and world coordinates
# using mypltr.
# Note that *for the given* tr, mypltr(i,j,tr)[0] is only a function of i
# and mypltr(i,j,tr)[1] is only function of j.
xg0 = mypltr(arange(NX),0,tr)[0]
yg0 = mypltr(0,arange(NY),tr)[1]
# Build the 1-d coord arrays.
distort = .4
xx = xg0
xg1 = xx + distort * cos( .5 * pi * xx )
yy = yg0
yg1 = yy - distort * cos( .5 * pi * yy )
# Build the 2-d coord arrays.
xx.shape = (-1,1)
xg2 = xx + distort*cos((0.5*pi)*xx)*cos((0.5*pi)*yy)
yg2 = yy - distort*cos((0.5*pi)*xx)*cos((0.5*pi)*yy)
# Plot using identity transform
# Load first-page colour palettes
w.plspal0("cmap0_black_on_white.pal")
w.plspal1("cmap1_gray.pal",1)
w.plscmap0n(3)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(-1.0, 1.0, -1.0, 1.0)
w.plpsty(0)
# Note another alternative to produce the identical result in a different way
# is to use the command:
# w.plshades(zz, -1.0, 1.0, -1.0, 1.0, shedge, fill_width, 1)
# The above command works because xmin, xmax, ymin, and ymax do an effective
# linear transformation on the index ranges. (We could have dropped
# xmin, xmax, ymin, ymax since the defaults are -1.0, 1.0, -1.0, 1.0, but
# for pedagogical reasons we left them in.) The alternative below using
# mypltr does the exact same linear transformation because of the way that
# the tr array has been defined. Note that when pltr and pltr_data are
# defined, xmin, xmax, ymin, ymax are completely ignored so we can drop
# them from the argument list.
w.plshades(zz, shedge, fill_width, 1, mypltr, tr)
# Smaller text
w.plschr(0.0, 0.75 )
# Small ticks on the vertical axis
w.plsmaj( 0.0, 0.5 )
w.plsmin( 0.0, 0.5 )
num_values[0] = NS + 1
values[0] = shedge
(colorbar_width, colorbar_height) = w.plcolorbar ( w.PL_COLORBAR_SHADE | w.PL_COLORBAR_SHADE_LABEL, 0, 0.005, 0.0, 0.0375, 0.875, 0, 1, 1, 0.0, 0.0, cont_color, cont_width, label_opts, labels, axis_opts, axis_ticks, axis_subticks, num_values, values)
# Reset text and tick sizes
w.plschr( 0.0, 1.0 )
w.plsmaj( 0.0, 1.0 )
w.plsmin( 0.0, 1.0 )
w.plcol0(1)
w.plbox( "bcnst", 0., 0, "bcnstv", 0., 0 )
w.plcol0(2)
w.pllab( "distance", "altitude", "Bogon density" )
# Plot using 1d coordinate transform
w.plspal0("cmap0_black_on_white.pal")
w.plspal1("cmap1_blue_yellow.pal",1)
w.plscmap0n(3)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(-1.0, 1.0, -1.0, 1.0)
w.plpsty(0)
w.plshades(zz, shedge, fill_width, 1, w.pltr1, xg1, yg1)
# Smaller text
w.plschr(0.0, 0.75 )
# Small ticks on the vertical axis
w.plsmaj( 0.0, 0.5 )
w.plsmin( 0.0, 0.5 )
num_values[0] = NS + 1
values[0] = shedge
(colorbar_width, colorbar_height) = w.plcolorbar ( w.PL_COLORBAR_SHADE | w.PL_COLORBAR_SHADE_LABEL, 0, 0.005, 0.0, 0.0375, 0.875, 0, 1, 1, 0.0, 0.0, cont_color, cont_width, label_opts, labels, axis_opts, axis_ticks, axis_subticks, num_values, values)
# Reset text and tick sizes
w.plschr( 0.0, 1.0 )
w.plsmaj( 0.0, 1.0 )
w.plsmin( 0.0, 1.0 )
w.plcol0(1)
w.plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
w.plcol0(2)
w.pllab( "distance", "altitude", "Bogon density" )
# Plot using 2d coordinate transform
w.plspal0("cmap0_black_on_white.pal")
w.plspal1("cmap1_blue_red.pal",1)
w.plscmap0n(3)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(-1.0, 1.0, -1.0, 1.0)
w.plpsty(0)
w.plshades(zz, shedge, fill_width, 0, w.pltr2, xg2, yg2)
# Smaller text
w.plschr(0.0, 0.75 )
# Small ticks on the vertical axis
w.plsmaj( 0.0, 0.5 )
w.plsmin( 0.0, 0.5 )
num_values[0] = NS + 1
values[0] = shedge
(colorbar_width, colorbar_height) = w.plcolorbar ( w.PL_COLORBAR_SHADE | w.PL_COLORBAR_SHADE_LABEL, 0, 0.005, 0.0, 0.0375, 0.875, 0, 1, 1, 0.0, 0.0, cont_color, cont_width, label_opts, labels, axis_opts, axis_ticks, axis_subticks, num_values, values)
# Reset text and tick sizes
w.plschr( 0.0, 1.0 )
w.plsmaj( 0.0, 1.0 )
w.plsmin( 0.0, 1.0 )
w.plcol0(1)
w.plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
w.plcol0(2)
w.plcont(ww, clevel, w.pltr2, xg2, yg2)
w.pllab( "distance", "altitude", "Bogon density, with streamlines" )
# Plot using 2d coordinate transform (with contours generated by w.plshades)
w.plspal0("")
w.plspal1("",1)
w.plscmap0n(3)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(-1.0, 1.0, -1.0, 1.0)
w.plpsty(0)
# Note default cont_color and cont_width are zero so that no contours
# are done with other calls to w.plshades. But for this call we specify
# non-zero values so that contours are drawn.
w.plshades(zz, shedge, fill_width, 2, 3.0, 0, w.pltr2, xg2, yg2)
# Smaller text
w.plschr(0.0, 0.75 )
# Small ticks on the vertical axis
w.plsmaj( 0.0, 0.5 )
w.plsmin( 0.0, 0.5 )
num_values[0] = NS + 1
values[0] = shedge
(colorbar_width, colorbar_height) = w.plcolorbar ( w.PL_COLORBAR_SHADE | w.PL_COLORBAR_SHADE_LABEL, 0, 0.005, 0.0, 0.0375, 0.875, 0, 1, 1, 0.0, 0.0, 2, 3.0, label_opts, labels, axis_opts, axis_ticks, axis_subticks, num_values, values)
# Reset text and tick sizes
w.plschr( 0.0, 1.0 )
w.plsmaj( 0.0, 1.0 )
w.plsmin( 0.0, 1.0 )
w.plcol0(1)
w.plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
w.plcol0(2)
# w.plcont(ww, clevel, "pltr2", xg2, yg2, 0)
w.pllab( "distance", "altitude", "Bogon density" )
# Example with polar coordinates that demonstrates python wrap support.
w.plspal0("cmap0_black_on_white.pal")
w.plspal1("cmap1_gray.pal",1)
w.plscmap0n(3)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(-1.0, 1.0, -1.0, 1.0)
# Build new coordinate matrices.
r = arange(NX)/(NX-1.)
r.shape = (-1,1)
t = (2.*pi/(NY-1.))*arange(NY-1)
xg = r*cos(t)
yg = r*sin(t)
z = exp(-r*r)*cos(5.*pi*r)*cos(5.*t)
# Need a new shedge to go along with the new data set.
zmin = min(z.flat)
zmax = max(z.flat)
shedge = zmin + ((zmax - zmin)/NS) * (arange(NS+1))
w.plpsty(0)
# Now we can shade the interior region. Use wrap=2 to simulate additional
# point at t = 2 pi.
w.plshades(z, shedge, fill_width, 0, w.pltr2, xg, yg, 2)
# Smaller text
w.plschr(0.0, 0.75 )
# Small ticks on the vertical axis
w.plsmaj( 0.0, 0.5 )
w.plsmin( 0.0, 0.5 )
num_values[0] = NS + 1
values[0] = shedge
(colorbar_width, colorbar_height) = w.plcolorbar ( w.PL_COLORBAR_SHADE | w.PL_COLORBAR_SHADE_LABEL, 0, 0.005, 0.0, 0.0375, 0.875, 0, 1, 1, 0.0, 0.0, cont_color, cont_width, label_opts, labels, axis_opts, axis_ticks, axis_subticks, num_values, values)
# Reset text and tick sizes
w.plschr( 0.0, 1.0 )
w.plsmaj( 0.0, 1.0 )
w.plsmin( 0.0, 1.0 )
# Now we can draw the perimeter. (If do before, w.plshades may overlap.)
t = 2.*pi*arange(PERIMETERPTS)/(PERIMETERPTS-1.)
px = cos(t)
py = sin(t)
w.plcol0(1)
w.plline( px, py )
# And label the plot.
w.plcol0(2)
w.pllab( "", "", "Tokamak Bogon Instability" )
# Restore defaults
w.plschr( 0.0, 1.0 )
# cmap0 default color palette.
w.plspal0("cmap0_default.pal")
# cmap1 default color palette.
w.plspal1("cmap1_default.pal",1)
# Must be done independently because otherwise this changes output files
# and destroys agreement with C examples.
#w.plcol0(1)
|