File: x18.py

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (155 lines) | stat: -rw-r--r-- 4,577 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8; -*-

#  Copyright (C) 2001-2016 Alan W. Irwin

#  3-d line and point plot demo.
#
#  This file is part of PLplot.
#
#  PLplot is free software; you can redistribute it and/or modify
#  it under the terms of the GNU Library General Public License as published
#  by the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  PLplot is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Library General Public License for more details.
#
#  You should have received a copy of the GNU Library General Public License
#  along with PLplot; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#

from numpy import *

opt = [1, 0, 1, 0]

alt = [20.0, 35.0, 50.0, 65.0]

az = [30.0, 40.0, 50.0, 60.0]

# main
#
# Does a series of 3-d plots for a given data set, with different
# viewing options in each plot.

NPTS = 1000

def main(w):

        for k in range(4):
                test_poly(w, k)

        # From the mind of a sick and twisted physicist...

        z = -1. + (2./NPTS) * arange(NPTS)
        x = z*cos((2.*pi*6./NPTS)*arange(NPTS))
        y = z*sin((2.*pi*6./NPTS)*arange(NPTS))

        for k in range(4):
                w.pladv(0)
                w.plvpor(0.0, 1.0, 0.0, 0.9)
                w.plwind(-1.0, 1.0, -0.9, 1.1)
                w.plcol0(1)
                w.plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0,
                        alt[k], az[k])
                w.plbox3("bnstu", "x axis", 0.0, 0,
                         "bnstu", "y axis", 0.0, 0,
                         "bcdmnstuv", "z axis", 0.0, 0)

                w.plcol0(2)

                if opt[k]:
                        w.plline3(x, y, z)
                else:
                        # U+22C5 DOT OPERATOR.
                        w.plstring3(x, y, z, "⋅")

                w.plcol0(3)
                title = "#frPLplot Example 18 - Alt=%.0f, Az=%.0f" % (alt[k], az[k])
                w.plmtex("t", 1.0, 0.5, 0.5, title)

        # Restore defaults
        # Must be done independently because otherwise this changes output files
        # and destroys agreement with C examples.
        #w.plcol0(1)

def THETA(a):
    return 2. * pi * (a) / 20.

def PHI(a):
    return pi * (a) / 20.1

def test_poly(w, k):

        draw = [ [ 1, 1, 1, 1 ],
                 [ 1, 0, 1, 0 ],
                 [ 0, 1, 0, 1 ],
                 [ 1, 1, 0, 0 ] ]

        w.pladv(0)
        w.plvpor(0.0, 1.0, 0.0, 0.9)
        w.plwind(-1.0, 1.0, -0.9, 1.1)
        w.plcol0(1)
        w.plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k])
        w.plbox3("bnstu", "x axis", 0.0, 0,
                 "bnstu", "y axis", 0.0, 0,
                 "bcdmnstuv", "z axis", 0.0, 0)

        w.plcol0(2)

#      x = r sin(phi) cos(theta)
#      y = r sin(phi) sin(theta)
#      z = r cos(phi)
#      r = 1 :=)

        cosi0 = cos(THETA(arange(20)))
        cosi1 = cos(THETA(arange(1,21)))
        sini0 = sin(THETA(arange(20)))
        sini1 = sin(THETA(arange(1,21)))
        cosi0.shape = (-1,1)
        cosi1.shape = (-1,1)
        sini0.shape = (-1,1)
        sini1.shape = (-1,1)
        cosj0 = cos(PHI(arange(20)))
        cosj1 = cos(PHI(arange(1,21)))
        sinj0 = sin(PHI(arange(20)))
        sinj1 = sin(PHI(arange(1,21)))

        x0 = cosi0*sinj0
        y0 = sini0*sinj0
        z0 = cosj0

        x1 = cosi0*sinj1
        y1 = sini0*sinj1
        z1 = cosj1

        x2 = cosi1*sinj1
        y2 = sini1*sinj1
        z2 = cosj1

        x3 = cosi1*sinj0
        y3 = sini1*sinj0
        z3 = cosj0

        x4 = x0
        y4 = y0
        z4 = z0

        for i in range(20):
                for j in range(20):

                        x = [x0[i,j],x1[i,j],x2[i,j],x3[i,j],x4[i,j]]
                        y = [y0[i,j],y1[i,j],y2[i,j],y3[i,j],y4[i,j]]
                        z = [z0[j],z1[j],z2[j],z3[j],z4[j]]

                        # Since negative dimensions don't make sense here
                        # to specify that points are to be drawn in
                        # counter-clockwise direction (as in x18c.c and
                        # x18.tcl) this must be specified with an optional
                        # extra argument in python API.
                        w.plpoly3(x, y, z, draw[k], 1)

        w.plcol0(3)
        w.plmtex("t", 1.0, 0.5, 0.5, "unit radius sphere" )