1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
# Copyright (C) 2004, 2005, 2006, 2007, 2008 Andrew Ross
# Copyright (C) 2004-2016 Alan W. Irwin
# Simple vector plot example.
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#
from numpy import *
# Pairs of points making the line segments used to plot the user defined arrow
arrow_x = [-0.5, 0.5, 0.3, 0.5, 0.3, 0.5]
arrow_y = [0.0, 0.0, 0.2, 0.0, -0.2, 0.0]
arrow2_x = [-0.5, 0.3, 0.3, 0.5, 0.3, 0.3]
arrow2_y = [0.0, 0.0, 0.2, 0.0, -0.2, 0.0]
xmax = 0.0
def circulation(w):
nx = 20
ny = 20
dx = 1.0
dy = 1.0
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
# Create data - circulation around the origin.
ix = ones(nx)
iy = ones(ny)
x = arange(nx)+0.5-nx/2.0
y = arange(ny)+0.5-ny/2.0
xg = multiply.outer(x,iy)
yg = multiply.outer(ix,y)
u = yg
v = -xg
# Plot vectors with default arrows
w.plenv(xmin, xmax, ymin, ymax, 0, 0)
w.pllab("(x)", "(y)", "#frPLplot Example 22 - circulation")
w.plcol0(2)
scaling = 0.0
w.plvect(u,v,scaling,w.pltr2,xg,yg)
w.plcol0(1)
# Vector plot of flow through a constricted pipe
def constriction( w, astyle ):
nx = 20
ny = 20
dx = 1.0
dy = 1.0
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
Q = 2.0
ix = ones(nx)
iy = ones(ny)
x = (arange(nx)-nx/2+0.5)*dx
y = (arange(ny)-ny/2+0.5)*dy
xg = multiply.outer(x,iy)
yg = multiply.outer(ix,y)
b = ymax/4.0*(3-cos(pi*x/xmax))
b2 = multiply.outer(b,iy)
mask = greater.outer(b,abs(y))
dbdx = ymax/4.0*(sin(pi*xg/xmax)*pi/xmax*yg/b2)
u = Q*ymax/b2*mask
v = dbdx*u
w.plenv(xmin, xmax, ymin, ymax, 0, 0)
w.pllab("(x)", "(y)", "#frPLplot Example 22 - constriction (arrow style "+str(astyle)+")")
w.plcol0(2)
scaling=-1.0
w.plvect(u,v,scaling,w.pltr2,xg,yg)
w.plcol0(1)
def transform( x, y, xt, yt, data ):
xt[0] = x
yt[0] = y / 4.0 * ( 3 - cos( pi * x / xmax ) )
# Vector plot of flow through a constricted pipe
def constriction2(w):
global xmax
nx = 20
ny = 20
nc = 11
nseg = 20
dx = 1.0
dy = 1.0
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
w.plstransform( transform, None )
Q = 2.0
ix = ones(nx)
iy = ones(ny)
x = (arange(nx)-nx/2+0.5)*dx
y = (arange(ny)-ny/2+0.5)*dy
xg = multiply.outer(x,iy)
yg = multiply.outer(ix,y)
b = ymax/4.0*(3-cos(pi*x/xmax))
b2 = multiply.outer(b,iy)
u = Q*ymax/b2
v = multiply.outer(zeros(nx),iy)
clev = Q + arange(nc)*Q/(nc-1)
w.plenv(xmin, xmax, ymin, ymax, 0, 0)
w.pllab("(x)", "(y)", "#frPLplot Example 22 - constriction with plstransform")
w.plcol0(2)
w.plshades(u,xmin+dx/2,xmax-dx/2,ymin+dy/2,ymax-dy/2,clev,0.0,1,1.0,0,None,None)
scaling=-1.0
w.plvect(u,v,scaling,w.pltr2,xg,yg)
w.plpath(nseg,xmin,ymax,xmax,ymax)
w.plpath(nseg,xmin,ymin,xmax,ymin)
w.plcol0(1)
w.plstransform(None,None)
# Vector plot of the gradient of a shielded potential (see example 9)
def potential(w):
nper = 100
nlevel = 10
nr = 20
ntheta = 20
# Create data to be contoured
r = 0.5+arange(nr)
r.shape = (-1,1)
theta = (2.*pi/float(ntheta-1))*(0.5+arange(ntheta))
xg = r*cos(theta)
yg = r*sin(theta)
rmax = nr
xmin = min(xg.flat)
xmax = max(xg.flat)
ymin = min(yg.flat)
ymax = max(yg.flat)
x = xg
y = yg
# Potential inside a conducting cylinder (or sphere) by method of images.
# Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
# Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
# Also put in smoothing term at small distances.
eps = 2.
q1 = 1.
d1 = rmax/4.
q1i = - q1*rmax/d1
d1i = rmax**2/d1
q2 = -1.
d2 = rmax/4.
q2i = - q2*rmax/d2
d2i = rmax**2/d2
div1 = sqrt((x-d1)**2 + (y-d1)**2 + eps**2)
div1i = sqrt((x-d1i)**2 + (y-d1i)**2 + eps**2)
div2 = sqrt((x-d2)**2 + (y+d2)**2 + eps**2)
div2i = sqrt((x-d2i)**2 + (y+d2i)**2 + eps**2)
zg = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
zmin = min(zg.flat)
zmax = max(zg.flat)
ug = (-q1*(x-d1)/div1**3 - q1i*(x-d1i)/div1i**3
- q2*(x-d2)/div2**3 - q2i*(x-d2i)/div2i**3 )
vg = (-q1*(y-d1)/div1**3 - q1i*(y-d1i)/div1i**3
- q2*(y+d2)/div2**3 - q2i*(y+d2i)/div2i**3 )
umin = min(ug.flat)
umax = max(ug.flat)
vmin = min(vg.flat)
vmax = max(vg.flat)
w.plenv(xmin, xmax, ymin, ymax, 0, 0)
w.pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
# Plot contours of the potential
dz = (zmax-zmin)/float(nlevel)
clevel = zmin + (arange(nlevel)+0.5)*dz
du = (umax-umin)/float(nlevel)
clevelu = umin + (arange(nlevel)+0.5)*du
dv = (vmax-vmin)/float(nlevel)
clevelv = vmin + (arange(nlevel)+0.5)*dv
w.plcol0(3)
w.pllsty(2)
w.plcont(zg,clevel,w.pltr2,xg,yg)
w.pllsty(1)
w.plcol0(1)
# Plot the vectors of the gradient of the potential
w.plcol0(2)
scaling = 25.0
w.plvect(ug,vg,scaling,w.pltr2,xg,yg)
w.plcol0(1)
# Perimeter
t = (2.*pi/(nper-1))*arange(nper)
px = rmax*cos(t)
py = rmax*sin(t)
w.plline(px,py)
# main
#
# Does a series of vector plots
#
def main(w):
circulation(w)
narr = 6
fill = 0
# Set arrow style using arrow_x and arrow_y then
# plot using these arrows.
w.plsvect(arrow_x, arrow_y, fill)
constriction(w, 1)
# Set arrow style using arrow2_x and arrow2_y then
# plot using these filled arrows.
fill = 1
w.plsvect(arrow2_x, arrow2_y, fill)
constriction(w, 2)
constriction2(w)
w.plsvect( None, None, 0)
potential(w)
# Restore defaults
# Must be done independently because otherwise this changes output files
# and destroys agreement with C examples.
#w.plcol0(1)
|