File: x29.py

package info (click to toggle)
plplot 5.15.0%2Bdfsg-19
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 31,312 kB
  • sloc: ansic: 79,707; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 50; sed: 34; fortran: 5
file content (337 lines) | stat: -rw-r--r-- 11,977 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#  Copyright (C) 2008 Andrew Ross
#  Copyright (C) 2008-2016 Alan W. Irwin

#  Sample plots using date / time formatting for axes
#
#  This file is part of PLplot.
#
#  PLplot is free software; you can redistribute it and/or modify
#  it under the terms of the GNU Library General Public License as published
#  by the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  PLplot is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Library General Public License for more details.
#
#  You should have received a copy of the GNU Library General Public License
#  along with PLplot; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#
from numpy import *

import calendar

#--------------------------------------------------------------------------
# main
#
#  Draws several plots which demonstrate the use of date / time formats for
#  the axis labels.
#  Time formatting is done using the system strftime routine. See the
#  documentation of this for full details of the available formats.
#
#  1) Plotting temperature over a day (using hours / minutes)
#  2) Plotting
#
#  Note: Times are stored as seconds since the epoch (usually 1st Jan 1970).
#
#--------------------------------------------------------------------------

def main(w):

    w.plsesc('@')

    plot1(w)

    plot2(w)

    plot3(w)

    plot4(w)

    # Restore defaults
    w.plsesc('#')

    # Must be done independently because otherwise this changes output files
    # and destroys agreement with C examples.
    #w.plcol0(1)

# Plot a model diurnal cycle of temperature
def plot1(w):

    # Data points every 10 minutes for 1 day
    npts = 73;

    xmin = 0.0;
    xmax = 60.0*60.0*24.0;    # Number of seconds in a day
    ymin = 10.0;
    ymax = 20.0;

    x = xmax*arange(npts)/float(npts)
    y = 15.0 - 5.0*cos(2*pi*x/xmax)
    xerr1 = x-60.0*5.0
    xerr2 = x+60.0*5.0
    yerr1 = y-0.1
    yerr2 = y+0.1

    w.pladv(0)

    w.plsmaj(0.0,0.5)
    w.plsmin(0.0,0.5)

    w.plvsta()
    w.plwind(xmin, xmax, ymin, ymax)

    # Draw a box with ticks spaced every 3 hour in X and 1 degree C in Y.
    w.plcol0(1)
    # Set time format to be hours:minutes
    w.pltimefmt("%H:%M")
    w.plbox("bcnstd", 3.0*60*60, 3, "bcnstv", 1, 5)

    w.plcol0(3)
    w.pllab("Time (hours:mins)", "Temperature (degC)", "@frPLplot Example 29 - Daily temperature")

    w.plcol0(4)

    w.plline(x, y)
    w.plcol0(2)
    w.plerrx(xerr1,xerr2,y)
    w.plcol0(3)
    w.plerry(x,yerr1,yerr2)

    w.plsmin(0.0,1.0)
    w.plsmaj(0.0,1.0)

# Plot the number of hours of daylight as a function of day for a year
def plot2(w):

    # Latitude for London
    lat = 51.5

    npts = 365

    xmin = 0.0
    xmax = npts*60.0*60.0*24.0
    ymin = 0.0
    ymax = 24.0

    # Formula for hours of daylight from
    # "A Model Comparison for Daylength as a Function of Latitude and
    # Day of the Year", 1995, Ecological Modelling, 80, pp 87-95.
    x = arange(npts)*60.0*60.0*24.0
    p = arcsin(0.39795*cos(0.2163108 + 2*arctan(0.9671396*tan(0.00860*(arange(npts)-186)))))
    d = 24.0 - (24.0/pi)*arccos( (sin(0.8333*pi/180.0) + sin(lat*pi/180.0)*sin(p)) / (cos(lat*pi/180.0)*cos(p)) )
    y = d

    w.plcol0(1)
    # Set time format to be abbreviated month name followed by day of month
    w.pltimefmt("%b %d")
    w.plprec(1,1)
    w.plenv(xmin, xmax, ymin, ymax, 0, 40)


    w.plcol0(3)
    w.pllab("Date", "Hours of daylight", "@frPLplot Example 29 - Hours of daylight at 51.5N")

    w.plcol0(4)

    w.plline(x, y)

    w.plprec(0,0)

def plot3(w):

# number of seconds elapsed since the Unix epoch (1970-01-01, UTC) for
# 2005-12-01, UTC.
    xmin = w.plctime(2005,11,1,0,0,0.)

    npts = 62

    xmax = xmin + npts*60.0*60.0*24.0
    ymin = 0.0
    ymax = 5.0

    i = arange(npts)
    imin = float(npts)/2.0-abs(i - float(npts)/2.0)
    x = xmin + i*60.0*60.0*24.0
    y = 1.0 + sin(2*pi*i/7.0) + exp( imin / 31.0)
    w.pladv(0)

    w.plvsta()
    w.plwind(xmin, xmax, ymin, ymax)

    w.plcol0(1)
    # Set time format to be ISO 8601 standard YYYY-MM-DD. Note that this is
    # equivalent to %f for C99 compliant implementations of strftime.
    w.pltimefmt("%Y-%m-%d")
    # Draw a box with ticks spaced every 14 days in X and 1 hour in Y.
    w.plbox("bcnstd", 14*24.0*60.0*60.0,14, "bcnstv", 1, 4)

    w.plcol0(3)
    w.pllab("Date", "Hours of television watched", "@frPLplot Example 29 - Hours of television watched in Dec 2005 / Jan 2006")

    w.plcol0(4)

    w.plssym(0.0,0.5)
    w.plpoin(x, y, 2)
    w.plline(x, y)

def plot4(w):

    # TAI-UTC (seconds) as a function of time.

    # Continuous time unit is Besselian years from whatever epoch is
    # chosen below.  Could change to seconds (or days) from the
    # epoch, but then would have to adjust xlabel_step below.
    scale = 365.242198781
    # MJD epoch (see <https://en.wikipedia.org/wiki/Julian_day>).
    # This is only set for illustrative purposes, and is overwritten
    # below for the time-representation reasons given in the
    # discussion below.
    epoch_year  = 1858
    epoch_month = 11
    epoch_day   = 17
    epoch_hour  = 0
    epoch_min   = 0
    epoch_sec   = 0.
    # To illustrate the time-representation issues of using the MJD
    # epoch, in 1985, MJD was roughly 46000 days which corresponds to
    # 4e9 seconds.  Thus, for the -DPL_DOUBLE=ON case where PLFLT is
    # a double which can represent continuous time to roughly 16
    # decimal digits of precision the time-representation error is
    # roughly ~400 nanoseconds.  Therefore the MJD epoch would be
    # acceptable for the plots below in the -DPL_DOUBLE=ON case.
    # However, that epoch is obviously not acceptable for the
    # -DPL_DOUBLE=OFF case where PLFLT is a float which can represent
    # continuous time to only ~7 decimal digits of precision
    # corresponding to a time representation error of 400 seconds (!)
    # in 1985.  For this reason, we do not use the MJD epoch below
    # and instead choose the best epoch for each case to minimize
    # time-representation issues.
    for kind in range(7):
        if kind == 0:
            # Choose midpoint to maximize time-representation precision.
            epoch_year  = 1985
            epoch_month = 0
            epoch_day   = 2
            epoch_hour  = 0
            epoch_min   = 0
            epoch_sec   = 0.
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
            xmin = w.plctime(1950,0,2,0,0,0.)
            xmax = w.plctime(2020,0,2,0,0,0.)
            npts = 70*12 + 1
            ymin = 0.0
            ymax = 36.0
            time_format = "%Y%"
            if_TAI_time_format = True
            title_suffix = "from 1950 to 2020"
            xtitle = "Year"
            xlabel_step = 10.
        elif kind == 1 or kind ==2:
            # Choose midpoint to maximize time-representation precision.
            epoch_year  = 1961
            epoch_month = 7
            epoch_day   = 1
            epoch_hour  = 0
            epoch_min   = 0
            epoch_sec   = 1.64757
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
            xmin = w.plctime(1961,7,1,0,0,1.64757-.20)
            xmax = w.plctime(1961,7,1,0,0,1.64757+.20)
            npts = 1001
            ymin = 1.625
            ymax = 1.725
            time_format = "%S%2%"
            title_suffix = "near 1961-08-01 (TAI)"
            xlabel_step = 0.05/(scale*86400.)
            if kind == 1:
                if_TAI_time_format = True
                xtitle = "Seconds (TAI)"
            else:
                if_TAI_time_format = False
                xtitle = "Seconds (TAI) labelled with corresponding UTC"
        elif kind == 3 or kind ==4:
            # Choose midpoint to maximize time-representation precision.
            epoch_year  = 1963
            epoch_month = 10
            epoch_day   = 1
            epoch_hour  = 0
            epoch_min   = 0
            epoch_sec   = 2.6972788
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
            xmin = w.plctime(1963,10,1,0,0,2.6972788-.20)
            xmax = w.plctime(1963,10,1,0,0,2.6972788+.20)
            npts = 1001
            ymin = 2.55
            ymax = 2.75
            time_format = "%S%2%"
            title_suffix = "near 1963-11-01 (TAI)"
            xlabel_step = 0.05/(scale*86400.)
            if kind == 3:
                if_TAI_time_format = True
                xtitle = "Seconds (TAI)"
            else:
                if_TAI_time_format = False
                xtitle = "Seconds (TAI) labelled with corresponding UTC"
        elif kind == 5 or kind == 6:
            # Choose midpoint to maximize time-representation precision.
            epoch_year  = 2009
            epoch_month = 0
            epoch_day   = 1
            epoch_hour  = 0
            epoch_min   = 0
            epoch_sec   = 34.
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
            xmin = w.plctime(2009,0,1,0,0,34.-5.)
            xmax = w.plctime(2009,0,1,0,0,34.+5.)
            npts = 1001
            ymin = 32.5
            ymax = 34.5
            time_format = "%S%2%"
            title_suffix = "near 2009-01-01 (TAI)"
            xlabel_step = 1./(scale*86400.)
            if kind == 5:
                if_TAI_time_format = True
                xtitle = "Seconds (TAI)"
            else:
                if_TAI_time_format = False
                xtitle = "Seconds (TAI) labelled with corresponding UTC"

        i = arange(npts)
        x = xmin + i*(xmax-xmin)/float(npts-1)
        y = zeros(npts)
        for j in range(npts):
            tai = x[j]
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
            (tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec) = w.plbtime(tai)
            # Calculate residual using tai as the epoch to nearly maximize time-representation precision.
            w.plconfigtime(scale, 0., 0., 0x0, True, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
            # Calculate continuous tai with new epoch.
            tai = w.plctime(tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
            # Calculate broken-down utc (with leap seconds inserted) from continuous tai with new epoch.
            w.plconfigtime(scale, 0., 0., 0x2, True, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
            (utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec) = w.plbtime(tai)
            # Calculate continuous utc from broken-down utc using same epoch as for the continuous tai.
            w.plconfigtime(scale, 0., 0., 0x0, True, tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec)
            utc = w.plctime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec)
            # Convert residuals to seconds.
            y[j]=(tai-utc)*scale*86400.

        w.pladv(0)
        w.plvsta()
        w.plwind(xmin, xmax, ymin, ymax)
        w.plcol0(1)
        if if_TAI_time_format:
            w.plconfigtime(scale, 0., 0., 0x0, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
        else:
          w.plconfigtime(scale, 0., 0., 0x2, True, epoch_year, epoch_month, epoch_day, epoch_hour, epoch_min, epoch_sec)
        w.pltimefmt(time_format)
        w.plbox("bcnstd", xlabel_step, 0, "bcnstv", 0., 0)
        w.plcol0(3)
        w.pllab(xtitle, "TAI-UTC (sec)", "@frPLplot Example 29 - TAI-UTC " + title_suffix)

        w.plcol0(4)

        w.plline(x, y)