File: tclMatrix.c

package info (click to toggle)
plplot 5.15.0%2Bdfsg2-15
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,396 kB
  • sloc: ansic: 79,703; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 74; sed: 34; fortran: 6
file content (1494 lines) | stat: -rw-r--r-- 47,562 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
//  Copyright 1994, 1995
//  Maurice LeBrun			mjl@dino.ph.utexas.edu
//  Institute for Fusion Studies	University of Texas at Austin
//
//  Copyright (C) 2004 Joao Cardoso
//  Copyright (C) 2016 Alan W. Irwin
//
//  This file is part of PLplot.
//
//  PLplot is free software; you can redistribute it and/or modify
//  it under the terms of the GNU Library General Public License as published
//  by the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  PLplot is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU Library General Public License for more details.
//
//  You should have received a copy of the GNU Library General Public License
//  along with PLplot; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//--------------------------------------------------------------------------
//
//  This file contains routines that implement Tcl matrices.
//  These are operators that are used to store, return, and modify
//  numeric data stored in binary array format.  The emphasis is
//  on high performance and low overhead, something that Tcl lists
//  or associative arrays aren't so good at.
//

//
//#define DEBUG
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pldll.h"
#include "tclMatrix.h"

// Cool math macros

#ifndef MAX
#define MAX( a, b )    ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
#endif
#ifndef MIN
#define MIN( a, b )    ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )
#endif

// For the truly desperate debugging task

#ifdef DEBUG_ENTER
#define dbug_enter( a ) \
    fprintf( stderr, "%s: Entered %s\n", __FILE__, a );

#else
#define dbug_enter( a )
#endif

// Internal data

static int           matTable_initted = 0; // Hash table initialization flag
static Tcl_HashTable matTable;             // Hash table for external access to data

// Function prototypes

// Handles matrix initialization lists

static int
MatrixAssign( Tcl_Interp* interp, tclMatrix* m,
              int level, int *offset, int nargs, const char** args );

// Invoked to process the "matrix" Tcl command.

static int
MatrixCmd( ClientData clientData, Tcl_Interp *interp, int argc, const char **argv );

// Causes matrix command to be deleted.

static char *
DeleteMatrixVar( ClientData clientData,
                 Tcl_Interp *interp, char *name1, char *name2, int flags );

// Releases all the resources allocated to the matrix command.

static void
DeleteMatrixCmd( ClientData clientData );

// These do the put/get operations for each supported type

static void
MatrixPut_f( ClientData clientData, Tcl_Interp* interp, int index, const char *string );

static void
MatrixGet_f( ClientData clientData, Tcl_Interp* interp, int index, char *string );

static void
MatrixPut_i( ClientData clientData, Tcl_Interp* interp, int index, const char *string );

static void
MatrixGet_i( ClientData clientData, Tcl_Interp* interp, int index, char *string );

//--------------------------------------------------------------------------
//
// Tcl_MatCmd --
//
//	Invoked to process the "matrix" Tcl command.  Creates a multiply
//	dimensioned array (matrix) of floats or ints.  The number of
//	arguments determines the dimensionality.
//
// Results:
//	Returns the name of the new matrix.
//
// Side effects:
//	A new matrix (operator) gets created.
//
//--------------------------------------------------------------------------

int
Tcl_MatrixCmd( ClientData PL_UNUSED( clientData ), Tcl_Interp *interp,
               int argc, const char **argv )
{
    register tclMatrix *matPtr;
    int i, j, new, index, persist = 0, initializer = 0;
    Tcl_HashEntry      *hPtr;
    Tcl_CmdInfo        infoPtr;
    char c;
    size_t             argv0_length;
    int offset = 0;
    size_t             concatenated_argv_len;
    char               *concatenated_argv;
    const char         *const_concatenated_argv;

    dbug_enter( "Tcl_MatrixCmd" );

    if ( argc < 3 )
    {
        Tcl_AppendResult( interp, "wrong # args: should be \"", argv[0],
            " ?-persist? var type dim1 ?dim2? ?dim3? ...\"", (char *) NULL );
        return TCL_ERROR;
    }

    // Create hash table on first call

    if ( !matTable_initted )
    {
        matTable_initted = 1;
        Tcl_InitHashTable( &matTable, TCL_STRING_KEYS );
    }

    // Check for -persist flag

    for ( i = 1; i < argc; i++ )
    {
        c            = argv[i][0];
        argv0_length = strlen( argv[i] );

        // If found, set persist variable and compress argv-list

        if ( ( c == '-' ) && ( strncmp( argv[i], "-persist", argv0_length ) == 0 ) )
        {
            persist = 1;
            argc--;
            for ( j = i; j < argc; j++ )
                argv[j] = argv[j + 1];
            break;
        }
    }

    // Create matrix data structure

    matPtr          = (tclMatrix *) malloc( sizeof ( tclMatrix ) );
    matPtr->fdata   = NULL;
    matPtr->idata   = NULL;
    matPtr->name    = NULL;
    matPtr->dim     = 0;
    matPtr->len     = 1;
    matPtr->tracing = 0;
    matPtr->indices = NULL;

    // MAX_ARRAY_DIM is #defined to be 3. Later programming logic
    // treats all lower-dimensioned matrices as 3D matrices where the
    // higher dimension size is 1.  So must initialize all sizes
    // to 1 here.
    for ( i = 0; i < MAX_ARRAY_DIM; i++ )
        matPtr->n[i] = 1;

    // Create name
    // It should be unique

    argc--; argv++;

    if ( Tcl_GetCommandInfo( interp, argv[0], &infoPtr ) )
    {
        Tcl_AppendResult( interp, "Matrix operator \"", argv[0],
            "\" already in use", (char *) NULL );
        free( (void *) matPtr );
        return TCL_ERROR;
    }

    if ( Tcl_GetVar( interp, argv[0], 0 ) != NULL )
    {
        Tcl_AppendResult( interp, "Illegal name for Matrix operator \"",
            argv[0], "\": local variable of same name is active",
            (char *) NULL );
        free( (void *) matPtr );
        return TCL_ERROR;
    }

    matPtr->name = (char *) malloc( strlen( argv[0] ) + 1 );
    strcpy( matPtr->name, argv[0] );

    // Initialize type

    argc--; argv++;
    c            = argv[0][0];
    argv0_length = strlen( argv[0] );

    if ( ( c == 'f' ) && ( strncmp( argv[0], "float", argv0_length ) == 0 ) )
    {
        matPtr->type = TYPE_FLOAT;
        matPtr->put  = MatrixPut_f;
        matPtr->get  = MatrixGet_f;
    }
    else if ( ( c == 'i' ) && ( strncmp( argv[0], "int", argv0_length ) == 0 ) )
    {
        matPtr->type = TYPE_INT;
        matPtr->put  = MatrixPut_i;
        matPtr->get  = MatrixGet_i;
    }
    else
    {
        Tcl_AppendResult( interp, "Matrix type \"", argv[0],
            "\" not supported, should be \"float\" or \"int\"",
            (char *) NULL );

        DeleteMatrixCmd( (ClientData) matPtr );
        return TCL_ERROR;
    }

    // Initialize dimensions

    argc--; argv++;
    for (; argc > 0; argc--, argv++ )
    {
        // Check for initializer

        if ( strcmp( argv[0], "=" ) == 0 )
        {
            argc--; argv++;
            initializer = 1;
            break;
        }

        // Must be a dimensional parameter.  Increment number of dimensions.

        matPtr->dim++;
        if ( matPtr->dim > MAX_ARRAY_DIM )
        {
            Tcl_AppendResult( interp,
                "too many dimensions specified for Matrix operator \"",
                matPtr->name, "\"", (char *) NULL );

            DeleteMatrixCmd( (ClientData) matPtr );
            return TCL_ERROR;
        }

        // Check to see if dimension is valid and store

        index            = matPtr->dim - 1;
        matPtr->n[index] = MAX( 0, atoi( argv[0] ) );
        matPtr->len     *= matPtr->n[index];
    }

    if ( matPtr->dim < 1 )
    {
        Tcl_AppendResult( interp,
            "insufficient dimensions given for Matrix operator \"",
            matPtr->name, "\"", (char *) NULL );
        DeleteMatrixCmd( (ClientData) matPtr );
        return TCL_ERROR;
    }

    // Allocate space for data

    switch ( matPtr->type )
    {
    case TYPE_FLOAT:
        matPtr->fdata = (Mat_float *) malloc( (size_t) ( matPtr->len ) * sizeof ( Mat_float ) );
        for ( i = 0; i < matPtr->len; i++ )
            matPtr->fdata[i] = 0.0;
        break;

    case TYPE_INT:
        matPtr->idata = (Mat_int *) malloc( (size_t) ( matPtr->len ) * sizeof ( Mat_int ) );
        for ( i = 0; i < matPtr->len; i++ )
            matPtr->idata[i] = 0;
        break;
    }

    // Process the initializer, if present

    if ( initializer )
    {
        if ( argc <= 0 )
        {
            Tcl_AppendResult( interp,
                "no initialization data given after \"=\" for Matrix operator \"",
                matPtr->name, "\"", (char *) NULL );
            DeleteMatrixCmd( (ClientData) matPtr );
            return TCL_ERROR;
        }

        // Prepare concatenated_argv string consisting of "{argv[0] argv[1] ... argv[argc-1]}"
        // so that _any_ space-separated bunch of numerical arguments will work.
        // Account for beginning and ending curly braces and trailing \0.
        concatenated_argv_len = 3;
        for ( i = 0; i < argc; i++ )
            // Account for length of string + space separator.
            concatenated_argv_len += strlen( argv[i] ) + 1;
        concatenated_argv = (char *) malloc( concatenated_argv_len * sizeof ( char ) );

        // Prepare for string concatenation using strcat
        concatenated_argv[0] = '\0';
        strcat( concatenated_argv, "{" );
        for ( i = 0; i < argc; i++ )
        {
            strcat( concatenated_argv, argv[i] );
            strcat( concatenated_argv, " " );
        }
        strcat( concatenated_argv, "}" );

        const_concatenated_argv = (const char *) concatenated_argv;

        // Use all raw indices in row-major (C) order for put in MatrixAssign
        matPtr->nindices = matPtr->len;
        matPtr->indices  = NULL;

        if ( MatrixAssign( interp, matPtr, 0, &offset, 1, &const_concatenated_argv ) != TCL_OK )
        {
            DeleteMatrixCmd( (ClientData) matPtr );
            free( (void *) concatenated_argv );
            return TCL_ERROR;
        }
        free( (void *) concatenated_argv );
    }

    // For later use in matrix assigments
    // N.B. matPtr->len could be large so this check for success might
    // be more than pro forma.
    if ( ( matPtr->indices = (int *) malloc( (size_t) ( matPtr->len ) * sizeof ( int ) ) ) == NULL )
    {
        Tcl_AppendResult( interp,
            "memory allocation failed for indices vector associated with Matrix operator \"",
            matPtr->name, "\"", (char *) NULL );
        DeleteMatrixCmd( (ClientData) matPtr );
        return TCL_ERROR;
    }
    // Delete matrix when it goes out of scope unless -persist specified
    // Use local variable of same name as matrix and trace it for unsets

    if ( !persist )
    {
        if ( Tcl_SetVar( interp, matPtr->name,
                 "old_bogus_syntax_please_upgrade", 0 ) == NULL )
        {
            Tcl_AppendResult( interp, "unable to schedule Matrix operator \"",
                matPtr->name, "\" for automatic deletion", (char *) NULL );
            DeleteMatrixCmd( (ClientData) matPtr );
            return TCL_ERROR;
        }
        matPtr->tracing = 1;
        Tcl_TraceVar( interp, matPtr->name, TCL_TRACE_UNSETS,
            (Tcl_VarTraceProc *) DeleteMatrixVar, (ClientData) matPtr );
    }

    // Create matrix operator

#ifdef DEBUG
    fprintf( stderr, "Creating Matrix operator of name %s\n", matPtr->name );
#endif
    Tcl_CreateCommand( interp, matPtr->name, (Tcl_CmdProc *) MatrixCmd,
        (ClientData) matPtr, (Tcl_CmdDeleteProc *) DeleteMatrixCmd );

    // Store pointer to interpreter to handle bizarre uses of multiple
    // interpreters (e.g. as in [incr Tcl])

    matPtr->interp = interp;

    // Create hash table entry for this matrix operator's data
    // This should never fail

    hPtr = Tcl_CreateHashEntry( &matTable, matPtr->name, &new );
    if ( !new )
    {
        Tcl_AppendResult( interp,
            "Unable to create hash table entry for Matrix operator \"",
            matPtr->name, "\"", (char *) NULL );
        return TCL_ERROR;
    }
    Tcl_SetHashValue( hPtr, matPtr );

    Tcl_SetResult( interp, matPtr->name, TCL_VOLATILE );
    return TCL_OK;
}

//--------------------------------------------------------------------------
//
// Tcl_GetMatrixPtr --
//
//	Returns a pointer to the specified matrix operator's data.
//
// Results:
//	None.
//
// Side effects:
//	None.
//
//--------------------------------------------------------------------------

tclMatrix *
Tcl_GetMatrixPtr( Tcl_Interp *interp, const char *matName )
{
    Tcl_HashEntry *hPtr;

    dbug_enter( "Tcl_GetMatrixPtr" );

    if ( !matTable_initted )
    {
        return NULL;
    }

    hPtr = Tcl_FindHashEntry( &matTable, matName );
    if ( hPtr == NULL )
    {
        Tcl_AppendResult( interp, "No matrix operator named \"",
            matName, "\"", (char *) NULL );
        return NULL;
    }
    return (tclMatrix *) Tcl_GetHashValue( hPtr );
}

//--------------------------------------------------------------------------
//
//  Tcl_MatrixInstallXtnsn --
//
//	Install a tclMatrix extension subcommand.
//
// Results:
//	Should be 1.  Have to think about error results.
//
// Side effects:
//	Enables you to install special purpose compiled code to handle
//	custom operations on a tclMatrix.
//
//--------------------------------------------------------------------------

static tclMatrixXtnsnDescr *head = (tclMatrixXtnsnDescr *) NULL;
static tclMatrixXtnsnDescr *tail = (tclMatrixXtnsnDescr *) NULL;

int
Tcl_MatrixInstallXtnsn( const char *cmd, tclMatrixXtnsnProc proc )
{
//
// My goodness how I hate primitive/pathetic C.  With C++ this
// could've been as easy as:
//     List<TclMatrixXtnsnDescr> xtnlist;
//     xtnlist.append( tclMatrixXtnsnDescr(cmd,proc) );
// grrrrr.
//

    tclMatrixXtnsnDescr *new =
        (tclMatrixXtnsnDescr *) malloc( sizeof ( tclMatrixXtnsnDescr ) );

    dbug_enter( "Tcl_MatrixInstallXtnsn" );

#ifdef DEBUG
    fprintf( stderr, "Installing a tclMatrix extension -> %s\n", cmd );
#endif

    new->cmd = malloc( strlen( cmd ) + 1 );
    strcpy( new->cmd, cmd );
    new->cmdproc = proc;
    new->next    = (tclMatrixXtnsnDescr *) NULL;

    if ( !head )
    {
        tail = head = new;
        return 1;
    }
    else
    {
        tail = tail->next = new;
        return 1;
    }
}

//--------------------------------------------------------------------------
//
// MatrixAssign --
//
// Assign values to the elements of a matrix.
//
// Returns TCL_OK on success or TC_ERROR on failure.
//
//--------------------------------------------------------------------------

static int MatrixAssign( Tcl_Interp* interp, tclMatrix* m,
                         int level, int *offset, int nargs, const char** args )
{
    static int verbose = 0;

    const char ** newargs;
    int        numnewargs;
    int        i;

    if ( verbose )
    {
        fprintf( stderr, "level %d  offset %d  nargs %d\n", level, *offset, nargs );
        for ( i = 0; i < nargs; i++ )
        {
            fprintf( stderr, "i = %d, args[i] = %s\n", i, args[i] );
        }
    }
    // Just in case of some programming error below that creates an infinite loop
    if ( level > 100 )
    {
        Tcl_AppendResult( interp, "too many list levels", (char *) NULL );
        return TCL_ERROR;
    }

    for ( i = 0; i < nargs; i++ )
    {
        if ( Tcl_SplitList( interp, args[i], &numnewargs, &newargs )
             != TCL_OK )
        {
            // Tcl_SplitList has already appended an error message
            // to the result associated with interp so no need to
            // append more.
            return TCL_ERROR;
        }

        if ( numnewargs == 1 && strlen( args[i] ) == strlen( newargs[0] ) && strcmp( args[i], newargs[0] ) == 0 )
        {
            // Tcl_SplitList has gone as deep as it can go into hierarchical lists ....
            if ( *offset >= m->nindices )
            {
                // Ignore any values in array assignment beyond what are needed.
            }
            else
            {
                if ( verbose )
                    fprintf( stderr, "\ta[%d] = %s\n", *offset, args[i] );
                if ( m->indices == NULL )
                    ( m->put )( (ClientData) m, interp, *offset, args[i] );
                else
                    ( m->put )( (ClientData) m, interp, m->indices[*offset], args[i] );
                ( *offset )++;
            }
        }
        else if ( MatrixAssign( interp, m, level + 1, offset, numnewargs, newargs )
                  != TCL_OK )
        {
            Tcl_Free( (char *) newargs );
            return TCL_ERROR;
        }
        Tcl_Free( (char *) newargs );
    }
    return TCL_OK;
}

//--------------------------------------------------------------------------
//
// MatrixCmd --
//
//	When a Tcl matrix command is invoked, this routine is called.
//
// Results:
//	A standard Tcl result value, usually TCL_OK.
//	On matrix get commands, one or a number of matrix elements are
//	printed.
//
// Side effects:
//	Depends on the matrix command.
//
//--------------------------------------------------------------------------

static int
MatrixCmd( ClientData clientData, Tcl_Interp *interp,
           int argc, const char **argv )
{
    register tclMatrix *matPtr = (tclMatrix *) clientData;
    int        put             = 0;
    char       c, tmp[200];
    const char *name = argv[0];
    // In one case (negative step and desired last actual index of 0)
    // stop[i] is -1 so it must have an int type rather than size_t.
    // To reduce casting most other slice-related types are also int
    // rather than size_t.
    int    start[MAX_ARRAY_DIM], stop[MAX_ARRAY_DIM], step[MAX_ARRAY_DIM], sign_step[MAX_ARRAY_DIM];
    int    i, j, k;
    int    char_converted, change_default_start, change_default_stop;
    size_t argv0_length;
    // Needs dimension of 2 to contain ":" and terminating NULL as a result of sscanf calls below.
    char   c1[2], c2[2];

    // Initialize

    if ( argc < 2 )
    {
        Tcl_AppendResult( interp, "wrong # args, type: \"",
            argv[0], " help\" for more info", (char *) NULL );
        return TCL_ERROR;
    }

    for ( i = 0; i < MAX_ARRAY_DIM; i++ )
    {
        start[i]     = 0;
        stop[i]      = matPtr->n[i];
        step[i]      = 1;
        sign_step[i] = 1;
    }

    // First check for a matrix command

    argc--; argv++;
    c            = argv[0][0];
    argv0_length = strlen( argv[0] );

    // dump -- send a nicely formatted listing of the array contents to stdout
    // (very helpful for debugging)

    if ( ( c == 'd' ) && ( strncmp( argv[0], "dump", argv0_length ) == 0 ) )
    {
        for ( i = start[0]; i < stop[0]; i++ )
        {
            for ( j = start[1]; j < stop[1]; j++ )
            {
                for ( k = start[2]; k < stop[2]; k++ )
                {
                    ( *matPtr->get )( (ClientData) matPtr, interp, I3D( i, j, k ), tmp );
                    printf( "%s ", tmp );
                }
                if ( matPtr->dim > 2 )
                    printf( "\n" );
            }
            if ( matPtr->dim > 1 )
                printf( "\n" );
        }
        printf( "\n" );
        return TCL_OK;
    }

    // delete -- delete the array

    else if ( ( c == 'd' ) && ( strncmp( argv[0], "delete", argv0_length ) == 0 ) )
    {
#ifdef DEBUG
        fprintf( stderr, "Deleting array %s\n", name );
#endif
        Tcl_DeleteCommand( interp, name );
        return TCL_OK;
    }

    // filter
    // Only works on 1d matrices

    else if ( ( c == 'f' ) && ( strncmp( argv[0], "filter", argv0_length ) == 0 ) )
    {
        Mat_float *tmpMat;
        int       ifilt, nfilt;

        if ( argc != 2 )
        {
            Tcl_AppendResult( interp, "wrong # args: should be \"",
                name, " ", argv[0], " num-passes\"",
                (char *) NULL );
            return TCL_ERROR;
        }

        if ( matPtr->dim != 1 || matPtr->type != TYPE_FLOAT )
        {
            Tcl_AppendResult( interp, "can only filter a 1d float matrix",
                (char *) NULL );
            return TCL_ERROR;
        }

        nfilt  = atoi( argv[1] );
        tmpMat = (Mat_float *) malloc( (size_t) ( matPtr->len + 2 ) * sizeof ( Mat_float ) );

        for ( ifilt = 0; ifilt < nfilt; ifilt++ )
        {
            // Set up temporary filtering array.  Use even boundary conditions.

            j = 0; tmpMat[j] = matPtr->fdata[0];
            for ( i = 0; i < matPtr->len; i++ )
            {
                j++; tmpMat[j] = matPtr->fdata[i];
            }
            j++; tmpMat[j] = matPtr->fdata[matPtr->len - 1];

            // Apply 3-point binomial filter

            for ( i = 0; i < matPtr->len; i++ )
            {
                j = i + 1;
                matPtr->fdata[i] = 0.25 * ( tmpMat[j - 1] + 2 * tmpMat[j] + tmpMat[j + 1] );
            }
        }

        free( (void *) tmpMat );
        return TCL_OK;
    }

    // help

    else if ( ( c == 'h' ) && ( strncmp( argv[0], "help", argv0_length ) == 0 ) )
    {
        Tcl_AppendResult( interp,
            "Available subcommands:\n\
dump   - return the values in the matrix as a string\n\
delete - delete the matrix (including the matrix command)\n\
filter - apply a three-point averaging (with a number of passes; ome-dimensional only)\n\
help   - this information\n\
info   - return the dimensions\n\
max    - return the maximum value for the entire matrix or for the first N entries\n\
min    - return the minimum value for the entire matrix or for the first N entries\n\
redim  - resize the matrix (for one-dimensional matrices only)\n\
scale  - scale the values by a given factor (for one-dimensional matrices only)\n\
\n\
Set and get values:\n\
matrix m f 3 3 3 - define matrix command \"m\", three-dimensional, floating-point data\n\
m 1 2 3          - return the value of matrix element [1,2,3]\n\
m 1 2 3 = 2.0    - set the value of matrix element [1,2,3] to 2.0 (do not return the value)\n\
m * 2 3 = 2.0    - set a slice consisting of all elements with second index 2 and third index 3 to 2.0",
            (char *) NULL );
        return TCL_OK;
    }

    // info

    else if ( ( c == 'i' ) && ( strncmp( argv[0], "info", argv0_length ) == 0 ) )
    {
        for ( i = 0; i < matPtr->dim; i++ )
        {
            sprintf( tmp, "%d", matPtr->n[i] );
            // Must avoid trailing space.
            if ( i < matPtr->dim - 1 )
                Tcl_AppendResult( interp, tmp, " ", (char *) NULL );
            else
                Tcl_AppendResult( interp, tmp, (char *) NULL );
        }
        return TCL_OK;
    }

    // max

    else if ( ( c == 'm' ) && ( strncmp( argv[0], "max", argv0_length ) == 0 ) )
    {
        int len;
        if ( argc < 1 || argc > 2 )
        {
            Tcl_AppendResult( interp, "wrong # args: should be \"",
                name, " ", argv[0], " ?length?\"",
                (char *) NULL );
            return TCL_ERROR;
        }

        if ( argc == 2 )
        {
            len = atoi( argv[1] );
            if ( len < 0 || len > matPtr->len )
            {
                Tcl_AppendResult( interp, "specified length out of valid range",
                    (char *) NULL );
                return TCL_ERROR;
            }
        }
        else
            len = matPtr->len;

        if ( len == 0 )
        {
            Tcl_AppendResult( interp, "attempt to find maximum of array with zero elements",
                (char *) NULL );
            return TCL_ERROR;
        }

        switch ( matPtr->type )
        {
        case TYPE_FLOAT: {
            Mat_float max = matPtr->fdata[0];
            for ( i = 1; i < len; i++ )
                max = MAX( max, matPtr->fdata[i] );
            //sprintf(tmp, "%.17g", max);
            Tcl_PrintDouble( interp, max, tmp );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            break;
        }
        case TYPE_INT: {
            Mat_int max = matPtr->idata[0];
            for ( i = 1; i < len; i++ )
                max = MAX( max, matPtr->idata[i] );
            sprintf( tmp, "%d", max );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            break;
        }
        }
        return TCL_OK;
    }

    // min

    else if ( ( c == 'm' ) && ( strncmp( argv[0], "min", argv0_length ) == 0 ) )
    {
        int len;
        if ( argc < 1 || argc > 2 )
        {
            Tcl_AppendResult( interp, "wrong # args: should be \"",
                name, " ", argv[0], " ?length?\"",
                (char *) NULL );
            return TCL_ERROR;
        }

        if ( argc == 2 )
        {
            len = atoi( argv[1] );
            if ( len < 0 || len > matPtr->len )
            {
                Tcl_AppendResult( interp, "specified length out of valid range",
                    (char *) NULL );
                return TCL_ERROR;
            }
        }
        else
            len = matPtr->len;

        if ( len == 0 )
        {
            Tcl_AppendResult( interp, "attempt to find minimum of array with zero elements",
                (char *) NULL );
            return TCL_ERROR;
        }

        switch ( matPtr->type )
        {
        case TYPE_FLOAT: {
            Mat_float min = matPtr->fdata[0];
            for ( i = 1; i < len; i++ )
                min = MIN( min, matPtr->fdata[i] );
            //sprintf(tmp, "%.17g", min);
            Tcl_PrintDouble( interp, min, tmp );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            break;
        }
        case TYPE_INT: {
            Mat_int min = matPtr->idata[0];
            for ( i = 1; i < len; i++ )
                min = MIN( min, matPtr->idata[i] );
            sprintf( tmp, "%d", min );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            break;
        }
        }
        return TCL_OK;
    }

    // redim
    // Only works on 1d matrices

    else if ( ( c == 'r' ) && ( strncmp( argv[0], "redim", argv0_length ) == 0 ) )
    {
        int  newlen;
        void *data;

        if ( argc != 2 )
        {
            Tcl_AppendResult( interp, "wrong # args: should be \"",
                name, " ", argv[0], " length\"",
                (char *) NULL );
            return TCL_ERROR;
        }

        if ( matPtr->dim != 1 )
        {
            Tcl_AppendResult( interp, "can only redim a 1d matrix",
                (char *) NULL );
            return TCL_ERROR;
        }

        newlen = atoi( argv[1] );
        switch ( matPtr->type )
        {
        case TYPE_FLOAT:
            data = realloc( matPtr->fdata, (size_t) newlen * sizeof ( Mat_float ) );
            if ( newlen != 0 && data == NULL )
            {
                Tcl_AppendResult( interp, "redim failed!",
                    (char *) NULL );
                return TCL_ERROR;
            }
            matPtr->fdata = (Mat_float *) data;
            for ( i = matPtr->len; i < newlen; i++ )
                matPtr->fdata[i] = 0.0;
            break;

        case TYPE_INT:
            data = realloc( matPtr->idata, (size_t) newlen * sizeof ( Mat_int ) );
            if ( newlen != 0 && data == NULL )
            {
                Tcl_AppendResult( interp, "redim failed!",
                    (char *) NULL );
                return TCL_ERROR;
            }
            matPtr->idata = (Mat_int *) data;
            for ( i = matPtr->len; i < newlen; i++ )
                matPtr->idata[i] = 0;
            break;
        }
        matPtr->n[0] = matPtr->len = newlen;
        // For later use in matrix assigments
        // N.B. matPtr->len could be large so this check for success might
        // be more than pro forma.
        data = realloc( matPtr->indices, (size_t) ( matPtr->len ) * sizeof ( int ) );
        if ( newlen != 0 && data == NULL )
        {
            Tcl_AppendResult( interp, "redim failed!", (char *) NULL );
            return TCL_ERROR;
        }
        matPtr->indices = (int *) data;
        return TCL_OK;
    }

    // scale
    // Only works on 1d matrices

    else if ( ( c == 's' ) && ( strncmp( argv[0], "scale", argv0_length ) == 0 ) )
    {
        Mat_float scale;

        if ( argc != 2 )
        {
            Tcl_AppendResult( interp, "wrong # args: should be \"",
                name, " ", argv[0], " scale-factor\"",
                (char *) NULL );
            return TCL_ERROR;
        }

        if ( matPtr->dim != 1 )
        {
            Tcl_AppendResult( interp, "can only scale a 1d matrix",
                (char *) NULL );
            return TCL_ERROR;
        }

        scale = atof( argv[1] );
        switch ( matPtr->type )
        {
        case TYPE_FLOAT:
            for ( i = 0; i < matPtr->len; i++ )
                matPtr->fdata[i] *= scale;
            break;

        case TYPE_INT:
            for ( i = 0; i < matPtr->len; i++ )
                matPtr->idata[i] = (Mat_int) ( (Mat_float) ( matPtr->idata[i] ) * scale );
            break;
        }
        return TCL_OK;
    }

    // Not a "standard" command, check the extension commands.

    {
        tclMatrixXtnsnDescr *p = head;
        for (; p; p = p->next )
        {
            if ( ( c == p->cmd[0] ) && ( strncmp( argv[0], p->cmd, argv0_length ) == 0 ) )
            {
#ifdef DEBUG
                fprintf( stderr, "found a match, invoking %s\n", p->cmd );
#endif
                return ( *( p->cmdproc ) )( matPtr, interp, --argc, ++argv );
            }
        }
    }

    // Must be a put or get of an array slice or array value.

    // Determine array index slice adopting the same rules as the Python case
    // documented at <https://docs.python.org/3/library/stdtypes.html#common-sequence-operations>
    // Also, for the case where just a _single_ ":" is used to represent the
    // complete range of indices for a dimension, the
    // notation "*" can be used as well for backwards compatibility
    // with the limited slice capability that was available before
    // this full slice capability was implemented.

    if ( argc < matPtr->dim )
    {
        Tcl_AppendResult( interp, "not enough dimensions specified for \"",
            name, "\"", (char *) NULL );
        return TCL_ERROR;
    }

    for ( i = 0; i < matPtr->dim; i++ )
    {
        // Because of argc and argv initialization and logic at end of
        // loop which decrements argc and increments argv, argv[0]
        // walks through the space-separated command-line strings that
        // have been parsed by Tcl for each iteration of this loop.
        // N.B. argv[0] should point to valid memory (i.e., one of the
        // command-line strings) because of the above initial argc
        // check and loop limits.
        argv0_length = strlen( argv[0] );
        // According to Linux man page for sscanf, a straightforward interpretation of the C standard
        // indicates that %n should not be counted as a successful conversion when calculating
        // the sscanf return value, but that man page also says should not count on that in general.
        // So in the logic below use the ">= " test to allow for both possibilities.

        // Default values if not determined below.
        start[i]             = 0;
        stop[i]              = matPtr->n[i];
        step[i]              = 1;
        change_default_start = 0;
        change_default_stop  = 0;
        // i:j:k
        if ( sscanf( argv[0], "%d%1[:]%d%1[:]%d%n", start + i, c1, stop + i, c2, step + i, &char_converted ) >= 5 )
        {
        }
        // i:j:
        else if ( sscanf( argv[0], "%d%1[:]%d%1[:]%n", start + i, c1, stop + i, c2, &char_converted ) >= 4 )
        {
        }
        // i:j
        else if ( sscanf( argv[0], "%d%1[:]%d%n", start + i, c1, stop + i, &char_converted ) >= 3 )
        {
        }
        // i::k
        else if ( sscanf( argv[0], "%d%1[:]%1[:]%d%n", start + i, c1, c2, step + i, &char_converted ) >= 4 )
        {
            if ( step[i] < 0 )
            {
                change_default_stop = 1;
            }
        }
        // i::
        else if ( sscanf( argv[0], "%d%1[:]%1[:]%n", start + i, c1, c2, &char_converted ) >= 3 )
        {
        }
        // i:
        else if ( sscanf( argv[0], "%d%1[:]%n", start + i, c1, &char_converted ) >= 2 )
        {
        }
        // :j:k
        else if ( sscanf( argv[0], "%1[:]%d%1[:]%d%n", c1, stop + i, c2, step + i, &char_converted ) >= 4 )
        {
            if ( step[i] < 0 )
            {
                change_default_start = 1;
            }
        }
        // :j:
        else if ( sscanf( argv[0], "%1[:]%d%1[:]%n", c1, stop + i, c2, &char_converted ) >= 3 )
        {
        }
        // :j
        else if ( sscanf( argv[0], "%1[:]%d%n", c1, stop + i, &char_converted ) >= 2 )
        {
        }
        // ::k
        else if ( sscanf( argv[0], "%1[:]%1[:]%d%n", c1, c2, step + i, &char_converted ) >= 3 )
        {
            if ( step[i] < 0 )
            {
                change_default_start = 1;
                change_default_stop  = 1;
            }
        }
        // ::
        else if ( strcmp( argv[0], "::" ) == 0 )
            char_converted = 2;
        // :
        else if ( strcmp( argv[0], ":" ) == 0 )
            char_converted = 1;
        // *
        else if ( strcmp( argv[0], "*" ) == 0 )
            char_converted = 1;
        // i
        else if ( sscanf( argv[0], "%d%n", start + i, &char_converted ) >= 1 )
        {
            // Special checks for the pure index case (just like in Python).
            if ( start[i] < 0 )
                start[i] += matPtr->n[i];
            if ( start[i] < 0 || start[i] > matPtr->n[i] - 1 )
            {
                sprintf( tmp, "Array index %d out of bounds: original string = \"%s\"; transformed = %d; min = 0; max = %d\n",
                    i, argv[0], start[i], matPtr->n[i] - 1 );
                Tcl_AppendResult( interp, tmp, (char *) NULL );
                return TCL_ERROR;
            }
            stop[i] = start[i] + 1;
        }
        else
        {
            sprintf( tmp, "Array slice for index %d with original string = \"%s\" could not be parsed\n",
                i, argv[0] );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            return TCL_ERROR;
        }

        // Check, convert and sanitize start[i], stop[i], and step[i] values.
        if ( step[i] == 0 )
        {
            Tcl_AppendResult( interp, "step part of slice must be non-zero",
                (char *) NULL );
            return TCL_ERROR;
        }
        sign_step[i] = ( step[i] > 0 ) ? 1 : -1;
        if ( (size_t) char_converted > argv0_length )
        {
            Tcl_AppendResult( interp, "MatrixCmd, internal logic error",
                (char *) NULL );
            return TCL_ERROR;
        }
        if ( (size_t) char_converted < argv0_length )
        {
            sprintf( tmp, "Array slice for index %d with original string = \"%s\" "
                "had trailing unparsed characters\n", i, argv[0] );
            Tcl_AppendResult( interp, tmp, (char *) NULL );
            return TCL_ERROR;
        }
        if ( start[i] < 0 )
            start[i] += matPtr->n[i];
        start[i] = MAX( 0, MIN( matPtr->n[i] - 1, start[i] ) );
        if ( change_default_start )
            start[i] = matPtr->n[i] - 1;
        if ( stop[i] < 0 )
            stop[i] += matPtr->n[i];
        if ( step[i] > 0 )
            stop[i] = MAX( 0, MIN( matPtr->n[i], stop[i] ) );
        else
            stop[i] = MAX( -1, MIN( matPtr->n[i], stop[i] ) );
        if ( change_default_stop )
            stop[i] = -1;

        // At this stage, start, stop, and step (!=0), correspond to
        // i, j, and k (!=0) in the slice documentation given at
        // <https://docs.python.org/3/library/stdtypes.html#common-sequence-operations>.
        // with all checks and conversions made.  According to note 5
        // of that documentation (translated to the present start,
        // stop and step notation and also subject to the clarifying
        // discussion in <http://bugs.python.org/issue28614>) the
        // array index should take on the values
        // index = start + n*step
        // where n 0, 1, etc., with that sequence
        // terminated just before index = stop is reached.
        // Therefore, the for loop for a typical index when step is positive should read
        // for ( i = start[0]; i < stop[0]; i += step[0] )
        // and when step is negative should read
        // for ( i = start[0]; i > stop[0]; i += step[0] )
        // So to cover both cases, we use for loops of the
        // following form below
        // for ( i = start[0]; sign_step[0]*i < stop[0]; i += step[0] )
        // where stop has been transformed as follows:
#ifdef DEBUG
        fprintf( stderr, "Array slice for index %d with original string = \"%s\" "
            "yielded start[i], stop[i], transformed stop[i], and step[i] = "
            "%d, %d, ", i, argv[0], start[i], stop[i] );
#endif
        stop[i] = sign_step[i] * stop[i];
#ifdef DEBUG
        fprintf( stderr, "%d, %d\n", stop[i], step[i] );
#endif
        argc--; argv++;
    }

    // If there is an "=" after indices, it's a put.  Do error checking.

    if ( argc > 0 )
    {
        put = 1;
        if ( strcmp( argv[0], "=" ) == 0 )
        {
            argc--; argv++;
            if ( argc == 0 )
            {
                Tcl_AppendResult( interp, "no value specified",
                    (char *) NULL );
                return TCL_ERROR;
            }
        }
        else
        {
            Tcl_AppendResult( interp, "extra characters after indices: \"",
                argv[0], "\"", (char *) NULL );
            return TCL_ERROR;
        }
    }

    // Calculate which indices will be used for the given index slices.
    matPtr->nindices = 0;

    for ( i = start[0]; sign_step[0] * i < stop[0]; i += step[0] )
    {
        for ( j = start[1]; sign_step[1] * j < stop[1]; j += step[1] )
        {
            for ( k = start[2]; sign_step[2] * k < stop[2]; k += step[2] )
            {
                matPtr->indices[matPtr->nindices++] = I3D( i, j, k );
            }
        }
    }

    // Do the get/put.
    // The loop over all elements takes care of the multi-element cases.
    if ( put )
    {
        char *endptr;
        // Check whether argv[0] could be interpreted as a raw single
        // number with no trailing characters.
        switch ( matPtr->type )
        {
        case TYPE_FLOAT:
            strtod( argv[0], &endptr );
            break;
        case TYPE_INT:
            strtol( argv[0], &endptr, 10 );
            break;
        }
        if ( argc == 1 && *argv[0] != '\0' && *endptr == '\0' )
        {
            // If _all_ characters of single RHS string can be
            // successfully read as a single number, then assign all
            // matrix elements with indices in matPtr->indices to that
            // single number.
            for ( i = 0; i < matPtr->nindices; i++ )
                ( *matPtr->put )( (ClientData) matPtr, interp, matPtr->indices[i], argv[0] );
        }
        else
        {
            // If RHS cannot be successfully read as a single number,
            // then assume it is a collection of numbers (in list form
            // or white-space separated).  Concatenate all remaining
            // elements of argv into list form, then use MatrixAssign
            // to assign all matrix elements with indices in
            // matPtr->indices using all (deep) non-list elements of
            // that list.
            int        offset = 0;
            size_t     concatenated_argv_len;
            char       *concatenated_argv;
            const char *const_concatenated_argv;

            // Prepare concatenated_argv string consisting of
            // "{argv[0] argv[1] ... argv[argc-1]}" so that _any_
            // space-separated bunch of numerical arguments or lists
            // of those will work.  Account for beginning and ending
            // curly braces and trailing \0.
            concatenated_argv_len = 3;
            for ( i = 0; i < argc; i++ )
                // Account for length of string + space separator.
                concatenated_argv_len += strlen( argv[i] ) + 1;
            concatenated_argv = (char *) malloc( concatenated_argv_len * sizeof ( char ) );

            // Prepare for string concatenation using strcat
            concatenated_argv[0] = '\0';
            strcat( concatenated_argv, "{" );
            for ( i = 0; i < argc; i++ )
            {
                strcat( concatenated_argv, argv[i] );
                strcat( concatenated_argv, " " );
            }
            strcat( concatenated_argv, "}" );

            const_concatenated_argv = (const char *) concatenated_argv;

            // Assign matrix elements using all numbers collected from
            // the potentially deep list, const_concatenated_argv.
            if ( MatrixAssign( interp, matPtr, 0, &offset, 1, &const_concatenated_argv ) != TCL_OK )
            {
                free( (void *) concatenated_argv );
                return TCL_ERROR;
            }
            free( (void *) concatenated_argv );
        }
    }
    else
    {
        // get
        for ( i = 0; i < matPtr->nindices; i++ )
        {
            ( *matPtr->get )( (ClientData) matPtr, interp, matPtr->indices[i], tmp );
            if ( i < matPtr->nindices - 1 )
                Tcl_AppendResult( interp, tmp, " ", (char *) NULL );
            else
                Tcl_AppendResult( interp, tmp, (char *) NULL );
        }
    }

    return TCL_OK;
}

//--------------------------------------------------------------------------
//
// Routines to handle Matrix get/put dependent on type:
//
// MatrixPut_f	MatrixGet_f
// MatrixPut_i	MatrixGet_i
//
// A "put" converts from string format to the intrinsic type, storing into
// the array.
//
// A "get" converts from the intrinsic type to string format, storing into
// a string buffer.
//
//--------------------------------------------------------------------------

static void
MatrixPut_f( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, const char *string )
{
    tclMatrix *matPtr = (tclMatrix *) clientData;

    matPtr->fdata[index] = atof( string );
}

static void
MatrixGet_f( ClientData clientData, Tcl_Interp* interp, int index, char *string )
{
    tclMatrix *matPtr = (tclMatrix *) clientData;
    double    value   = matPtr->fdata[index];

    //sprintf(string, "%.17g", value);
    Tcl_PrintDouble( interp, value, string );
}

static void
MatrixPut_i( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, const char *string )
{
    tclMatrix *matPtr = (tclMatrix *) clientData;

    if ( ( strlen( string ) > 2 ) && ( strncmp( string, "0x", 2 ) == 0 ) )
    {
        matPtr->idata[index] = (Mat_int) strtoul( &string[2], NULL, 16 );
    }
    else
        matPtr->idata[index] = atoi( string );
}

static void
MatrixGet_i( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, char *string )
{
    tclMatrix *matPtr = (tclMatrix *) clientData;

    sprintf( string, "%d", matPtr->idata[index] );
}

//--------------------------------------------------------------------------
//
// DeleteMatrixVar --
//
//	Causes matrix command to be deleted.  Invoked when variable
//	associated with matrix command is unset.
//
// Results:
//	None.
//
// Side effects:
//	See DeleteMatrixCmd.
//
//--------------------------------------------------------------------------

static char *
DeleteMatrixVar( ClientData clientData,
                 Tcl_Interp * PL_UNUSED( interp ), char * PL_UNUSED( name1 ), char * PL_UNUSED( name2 ), int PL_UNUSED( flags ) )
{
    tclMatrix   *matPtr = (tclMatrix *) clientData;
    Tcl_CmdInfo infoPtr;
    char        *name;

    dbug_enter( "DeleteMatrixVar" );

    if ( matPtr->tracing != 0 )
    {
        matPtr->tracing = 0;
        name            = (char *) malloc( strlen( matPtr->name ) + 1 );
        strcpy( name, matPtr->name );

#ifdef DEBUG
        if ( Tcl_GetCommandInfo( matPtr->interp, matPtr->name, &infoPtr ) )
        {
            if ( Tcl_DeleteCommand( matPtr->interp, matPtr->name ) == TCL_OK )
                fprintf( stderr, "Deleted command %s\n", name );
            else
                fprintf( stderr, "Unable to delete command %s\n", name );
        }
#else
        if ( Tcl_GetCommandInfo( matPtr->interp, matPtr->name, &infoPtr ) )
            Tcl_DeleteCommand( matPtr->interp, matPtr->name );
#endif
        free( (void *) name );
    }
    return (char *) NULL;
}

//--------------------------------------------------------------------------
//
// DeleteMatrixCmd --
//
//	Releases all the resources allocated to the matrix command.
//	Invoked just before a matrix command is removed from an interpreter.
//
//	Note: If the matrix has tracing enabled, it means the user
//	explicitly deleted a non-persistent matrix.  Not a good idea,
//	because eventually the local variable that was being traced will
//	become unset and the matrix data will be referenced in
//	DeleteMatrixVar.  So I've massaged this so that at worst it only
//	causes a minor memory leak instead of imminent program death.
//
// Results:
//	None.
//
// Side effects:
//	All memory associated with the matrix operator is freed (usually).
//
//--------------------------------------------------------------------------

static void
DeleteMatrixCmd( ClientData clientData )
{
    tclMatrix     *matPtr = (tclMatrix *) clientData;
    Tcl_HashEntry *hPtr;

    dbug_enter( "DeleteMatrixCmd" );

#ifdef DEBUG
    fprintf( stderr, "Freeing space associated with matrix %s\n", matPtr->name );
#endif

    // Remove hash table entry

    hPtr = Tcl_FindHashEntry( &matTable, matPtr->name );
    if ( hPtr != NULL )
        Tcl_DeleteHashEntry( hPtr );

    // Free data

    if ( matPtr->fdata != NULL )
    {
        free( (void *) matPtr->fdata );
        matPtr->fdata = NULL;
    }
    if ( matPtr->idata != NULL )
    {
        free( (void *) matPtr->idata );
        matPtr->idata = NULL;
    }
    if ( matPtr->indices != NULL )
    {
        free( (void *) matPtr->indices );
        matPtr->indices = NULL;
    }

    // Attempt to turn off tracing if possible.

    if ( matPtr->tracing )
    {
        if ( Tcl_VarTraceInfo( matPtr->interp, matPtr->name, TCL_TRACE_UNSETS,
                 (Tcl_VarTraceProc *) DeleteMatrixVar, NULL ) != NULL )
        {
            matPtr->tracing = 0;
            Tcl_UntraceVar( matPtr->interp, matPtr->name, TCL_TRACE_UNSETS,
                (Tcl_VarTraceProc *) DeleteMatrixVar, (ClientData) matPtr );
            Tcl_UnsetVar( matPtr->interp, matPtr->name, 0 );
        }
    }

    // Free name.

    if ( matPtr->name != NULL )
    {
        free( (void *) matPtr->name );
        matPtr->name = NULL;
    }

    // Free tclMatrix

    if ( !matPtr->tracing )
        free( (void *) matPtr );
#ifdef DEBUG
    else
        fprintf( stderr, "OOPS!  You just lost %d bytes\n", sizeof ( tclMatrix ) );
#endif
}