1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
|
// Copyright 1994, 1995
// Maurice LeBrun mjl@dino.ph.utexas.edu
// Institute for Fusion Studies University of Texas at Austin
//
// Copyright (C) 2004 Joao Cardoso
// Copyright (C) 2016 Alan W. Irwin
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//--------------------------------------------------------------------------
//
// This file contains routines that implement Tcl matrices.
// These are operators that are used to store, return, and modify
// numeric data stored in binary array format. The emphasis is
// on high performance and low overhead, something that Tcl lists
// or associative arrays aren't so good at.
//
//
//#define DEBUG
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pldll.h"
#include "tclMatrix.h"
// Cool math macros
#ifndef MAX
#define MAX( a, b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
#endif
#ifndef MIN
#define MIN( a, b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )
#endif
// For the truly desperate debugging task
#ifdef DEBUG_ENTER
#define dbug_enter( a ) \
fprintf( stderr, "%s: Entered %s\n", __FILE__, a );
#else
#define dbug_enter( a )
#endif
// Internal data
static int matTable_initted = 0; // Hash table initialization flag
static Tcl_HashTable matTable; // Hash table for external access to data
// Function prototypes
// Handles matrix initialization lists
static int
MatrixAssign( Tcl_Interp* interp, tclMatrix* m,
int level, int *offset, int nargs, const char** args );
// Invoked to process the "matrix" Tcl command.
static int
MatrixCmd( ClientData clientData, Tcl_Interp *interp, int argc, const char **argv );
// Causes matrix command to be deleted.
static char *
DeleteMatrixVar( ClientData clientData,
Tcl_Interp *interp, char *name1, char *name2, int flags );
// Releases all the resources allocated to the matrix command.
static void
DeleteMatrixCmd( ClientData clientData );
// These do the put/get operations for each supported type
static void
MatrixPut_f( ClientData clientData, Tcl_Interp* interp, int index, const char *string );
static void
MatrixGet_f( ClientData clientData, Tcl_Interp* interp, int index, char *string );
static void
MatrixPut_i( ClientData clientData, Tcl_Interp* interp, int index, const char *string );
static void
MatrixGet_i( ClientData clientData, Tcl_Interp* interp, int index, char *string );
//--------------------------------------------------------------------------
//
// Tcl_MatCmd --
//
// Invoked to process the "matrix" Tcl command. Creates a multiply
// dimensioned array (matrix) of floats or ints. The number of
// arguments determines the dimensionality.
//
// Results:
// Returns the name of the new matrix.
//
// Side effects:
// A new matrix (operator) gets created.
//
//--------------------------------------------------------------------------
int
Tcl_MatrixCmd( ClientData PL_UNUSED( clientData ), Tcl_Interp *interp,
int argc, const char **argv )
{
register tclMatrix *matPtr;
int i, j, new, index, persist = 0, initializer = 0;
Tcl_HashEntry *hPtr;
Tcl_CmdInfo infoPtr;
char c;
size_t argv0_length;
int offset = 0;
size_t concatenated_argv_len;
char *concatenated_argv;
const char *const_concatenated_argv;
dbug_enter( "Tcl_MatrixCmd" );
if ( argc < 3 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"", argv[0],
" ?-persist? var type dim1 ?dim2? ?dim3? ...\"", (char *) NULL );
return TCL_ERROR;
}
// Create hash table on first call
if ( !matTable_initted )
{
matTable_initted = 1;
Tcl_InitHashTable( &matTable, TCL_STRING_KEYS );
}
// Check for -persist flag
for ( i = 1; i < argc; i++ )
{
c = argv[i][0];
argv0_length = strlen( argv[i] );
// If found, set persist variable and compress argv-list
if ( ( c == '-' ) && ( strncmp( argv[i], "-persist", argv0_length ) == 0 ) )
{
persist = 1;
argc--;
for ( j = i; j < argc; j++ )
argv[j] = argv[j + 1];
break;
}
}
// Create matrix data structure
matPtr = (tclMatrix *) malloc( sizeof ( tclMatrix ) );
matPtr->fdata = NULL;
matPtr->idata = NULL;
matPtr->name = NULL;
matPtr->dim = 0;
matPtr->len = 1;
matPtr->tracing = 0;
matPtr->indices = NULL;
// MAX_ARRAY_DIM is #defined to be 3. Later programming logic
// treats all lower-dimensioned matrices as 3D matrices where the
// higher dimension size is 1. So must initialize all sizes
// to 1 here.
for ( i = 0; i < MAX_ARRAY_DIM; i++ )
matPtr->n[i] = 1;
// Create name
// It should be unique
argc--; argv++;
if ( Tcl_GetCommandInfo( interp, argv[0], &infoPtr ) )
{
Tcl_AppendResult( interp, "Matrix operator \"", argv[0],
"\" already in use", (char *) NULL );
free( (void *) matPtr );
return TCL_ERROR;
}
if ( Tcl_GetVar( interp, argv[0], 0 ) != NULL )
{
Tcl_AppendResult( interp, "Illegal name for Matrix operator \"",
argv[0], "\": local variable of same name is active",
(char *) NULL );
free( (void *) matPtr );
return TCL_ERROR;
}
matPtr->name = (char *) malloc( strlen( argv[0] ) + 1 );
strcpy( matPtr->name, argv[0] );
// Initialize type
argc--; argv++;
c = argv[0][0];
argv0_length = strlen( argv[0] );
if ( ( c == 'f' ) && ( strncmp( argv[0], "float", argv0_length ) == 0 ) )
{
matPtr->type = TYPE_FLOAT;
matPtr->put = MatrixPut_f;
matPtr->get = MatrixGet_f;
}
else if ( ( c == 'i' ) && ( strncmp( argv[0], "int", argv0_length ) == 0 ) )
{
matPtr->type = TYPE_INT;
matPtr->put = MatrixPut_i;
matPtr->get = MatrixGet_i;
}
else
{
Tcl_AppendResult( interp, "Matrix type \"", argv[0],
"\" not supported, should be \"float\" or \"int\"",
(char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
// Initialize dimensions
argc--; argv++;
for (; argc > 0; argc--, argv++ )
{
// Check for initializer
if ( strcmp( argv[0], "=" ) == 0 )
{
argc--; argv++;
initializer = 1;
break;
}
// Must be a dimensional parameter. Increment number of dimensions.
matPtr->dim++;
if ( matPtr->dim > MAX_ARRAY_DIM )
{
Tcl_AppendResult( interp,
"too many dimensions specified for Matrix operator \"",
matPtr->name, "\"", (char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
// Check to see if dimension is valid and store
index = matPtr->dim - 1;
matPtr->n[index] = MAX( 0, atoi( argv[0] ) );
matPtr->len *= matPtr->n[index];
}
if ( matPtr->dim < 1 )
{
Tcl_AppendResult( interp,
"insufficient dimensions given for Matrix operator \"",
matPtr->name, "\"", (char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
// Allocate space for data
switch ( matPtr->type )
{
case TYPE_FLOAT:
matPtr->fdata = (Mat_float *) malloc( (size_t) ( matPtr->len ) * sizeof ( Mat_float ) );
for ( i = 0; i < matPtr->len; i++ )
matPtr->fdata[i] = 0.0;
break;
case TYPE_INT:
matPtr->idata = (Mat_int *) malloc( (size_t) ( matPtr->len ) * sizeof ( Mat_int ) );
for ( i = 0; i < matPtr->len; i++ )
matPtr->idata[i] = 0;
break;
}
// Process the initializer, if present
if ( initializer )
{
if ( argc <= 0 )
{
Tcl_AppendResult( interp,
"no initialization data given after \"=\" for Matrix operator \"",
matPtr->name, "\"", (char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
// Prepare concatenated_argv string consisting of "{argv[0] argv[1] ... argv[argc-1]}"
// so that _any_ space-separated bunch of numerical arguments will work.
// Account for beginning and ending curly braces and trailing \0.
concatenated_argv_len = 3;
for ( i = 0; i < argc; i++ )
// Account for length of string + space separator.
concatenated_argv_len += strlen( argv[i] ) + 1;
concatenated_argv = (char *) malloc( concatenated_argv_len * sizeof ( char ) );
// Prepare for string concatenation using strcat
concatenated_argv[0] = '\0';
strcat( concatenated_argv, "{" );
for ( i = 0; i < argc; i++ )
{
strcat( concatenated_argv, argv[i] );
strcat( concatenated_argv, " " );
}
strcat( concatenated_argv, "}" );
const_concatenated_argv = (const char *) concatenated_argv;
// Use all raw indices in row-major (C) order for put in MatrixAssign
matPtr->nindices = matPtr->len;
matPtr->indices = NULL;
if ( MatrixAssign( interp, matPtr, 0, &offset, 1, &const_concatenated_argv ) != TCL_OK )
{
DeleteMatrixCmd( (ClientData) matPtr );
free( (void *) concatenated_argv );
return TCL_ERROR;
}
free( (void *) concatenated_argv );
}
// For later use in matrix assigments
// N.B. matPtr->len could be large so this check for success might
// be more than pro forma.
if ( ( matPtr->indices = (int *) malloc( (size_t) ( matPtr->len ) * sizeof ( int ) ) ) == NULL )
{
Tcl_AppendResult( interp,
"memory allocation failed for indices vector associated with Matrix operator \"",
matPtr->name, "\"", (char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
// Delete matrix when it goes out of scope unless -persist specified
// Use local variable of same name as matrix and trace it for unsets
if ( !persist )
{
if ( Tcl_SetVar( interp, matPtr->name,
"old_bogus_syntax_please_upgrade", 0 ) == NULL )
{
Tcl_AppendResult( interp, "unable to schedule Matrix operator \"",
matPtr->name, "\" for automatic deletion", (char *) NULL );
DeleteMatrixCmd( (ClientData) matPtr );
return TCL_ERROR;
}
matPtr->tracing = 1;
Tcl_TraceVar( interp, matPtr->name, TCL_TRACE_UNSETS,
(Tcl_VarTraceProc *) DeleteMatrixVar, (ClientData) matPtr );
}
// Create matrix operator
#ifdef DEBUG
fprintf( stderr, "Creating Matrix operator of name %s\n", matPtr->name );
#endif
Tcl_CreateCommand( interp, matPtr->name, (Tcl_CmdProc *) MatrixCmd,
(ClientData) matPtr, (Tcl_CmdDeleteProc *) DeleteMatrixCmd );
// Store pointer to interpreter to handle bizarre uses of multiple
// interpreters (e.g. as in [incr Tcl])
matPtr->interp = interp;
// Create hash table entry for this matrix operator's data
// This should never fail
hPtr = Tcl_CreateHashEntry( &matTable, matPtr->name, &new );
if ( !new )
{
Tcl_AppendResult( interp,
"Unable to create hash table entry for Matrix operator \"",
matPtr->name, "\"", (char *) NULL );
return TCL_ERROR;
}
Tcl_SetHashValue( hPtr, matPtr );
Tcl_SetResult( interp, matPtr->name, TCL_VOLATILE );
return TCL_OK;
}
//--------------------------------------------------------------------------
//
// Tcl_GetMatrixPtr --
//
// Returns a pointer to the specified matrix operator's data.
//
// Results:
// None.
//
// Side effects:
// None.
//
//--------------------------------------------------------------------------
tclMatrix *
Tcl_GetMatrixPtr( Tcl_Interp *interp, const char *matName )
{
Tcl_HashEntry *hPtr;
dbug_enter( "Tcl_GetMatrixPtr" );
if ( !matTable_initted )
{
return NULL;
}
hPtr = Tcl_FindHashEntry( &matTable, matName );
if ( hPtr == NULL )
{
Tcl_AppendResult( interp, "No matrix operator named \"",
matName, "\"", (char *) NULL );
return NULL;
}
return (tclMatrix *) Tcl_GetHashValue( hPtr );
}
//--------------------------------------------------------------------------
//
// Tcl_MatrixInstallXtnsn --
//
// Install a tclMatrix extension subcommand.
//
// Results:
// Should be 1. Have to think about error results.
//
// Side effects:
// Enables you to install special purpose compiled code to handle
// custom operations on a tclMatrix.
//
//--------------------------------------------------------------------------
static tclMatrixXtnsnDescr *head = (tclMatrixXtnsnDescr *) NULL;
static tclMatrixXtnsnDescr *tail = (tclMatrixXtnsnDescr *) NULL;
int
Tcl_MatrixInstallXtnsn( const char *cmd, tclMatrixXtnsnProc proc )
{
//
// My goodness how I hate primitive/pathetic C. With C++ this
// could've been as easy as:
// List<TclMatrixXtnsnDescr> xtnlist;
// xtnlist.append( tclMatrixXtnsnDescr(cmd,proc) );
// grrrrr.
//
tclMatrixXtnsnDescr *new =
(tclMatrixXtnsnDescr *) malloc( sizeof ( tclMatrixXtnsnDescr ) );
dbug_enter( "Tcl_MatrixInstallXtnsn" );
#ifdef DEBUG
fprintf( stderr, "Installing a tclMatrix extension -> %s\n", cmd );
#endif
new->cmd = malloc( strlen( cmd ) + 1 );
strcpy( new->cmd, cmd );
new->cmdproc = proc;
new->next = (tclMatrixXtnsnDescr *) NULL;
if ( !head )
{
tail = head = new;
return 1;
}
else
{
tail = tail->next = new;
return 1;
}
}
//--------------------------------------------------------------------------
//
// MatrixAssign --
//
// Assign values to the elements of a matrix.
//
// Returns TCL_OK on success or TC_ERROR on failure.
//
//--------------------------------------------------------------------------
static int MatrixAssign( Tcl_Interp* interp, tclMatrix* m,
int level, int *offset, int nargs, const char** args )
{
static int verbose = 0;
const char ** newargs;
int numnewargs;
int i;
if ( verbose )
{
fprintf( stderr, "level %d offset %d nargs %d\n", level, *offset, nargs );
for ( i = 0; i < nargs; i++ )
{
fprintf( stderr, "i = %d, args[i] = %s\n", i, args[i] );
}
}
// Just in case of some programming error below that creates an infinite loop
if ( level > 100 )
{
Tcl_AppendResult( interp, "too many list levels", (char *) NULL );
return TCL_ERROR;
}
for ( i = 0; i < nargs; i++ )
{
if ( Tcl_SplitList( interp, args[i], &numnewargs, &newargs )
!= TCL_OK )
{
// Tcl_SplitList has already appended an error message
// to the result associated with interp so no need to
// append more.
return TCL_ERROR;
}
if ( numnewargs == 1 && strlen( args[i] ) == strlen( newargs[0] ) && strcmp( args[i], newargs[0] ) == 0 )
{
// Tcl_SplitList has gone as deep as it can go into hierarchical lists ....
if ( *offset >= m->nindices )
{
// Ignore any values in array assignment beyond what are needed.
}
else
{
if ( verbose )
fprintf( stderr, "\ta[%d] = %s\n", *offset, args[i] );
if ( m->indices == NULL )
( m->put )( (ClientData) m, interp, *offset, args[i] );
else
( m->put )( (ClientData) m, interp, m->indices[*offset], args[i] );
( *offset )++;
}
}
else if ( MatrixAssign( interp, m, level + 1, offset, numnewargs, newargs )
!= TCL_OK )
{
Tcl_Free( (char *) newargs );
return TCL_ERROR;
}
Tcl_Free( (char *) newargs );
}
return TCL_OK;
}
//--------------------------------------------------------------------------
//
// MatrixCmd --
//
// When a Tcl matrix command is invoked, this routine is called.
//
// Results:
// A standard Tcl result value, usually TCL_OK.
// On matrix get commands, one or a number of matrix elements are
// printed.
//
// Side effects:
// Depends on the matrix command.
//
//--------------------------------------------------------------------------
static int
MatrixCmd( ClientData clientData, Tcl_Interp *interp,
int argc, const char **argv )
{
register tclMatrix *matPtr = (tclMatrix *) clientData;
int put = 0;
char c, tmp[200];
const char *name = argv[0];
// In one case (negative step and desired last actual index of 0)
// stop[i] is -1 so it must have an int type rather than size_t.
// To reduce casting most other slice-related types are also int
// rather than size_t.
int start[MAX_ARRAY_DIM], stop[MAX_ARRAY_DIM], step[MAX_ARRAY_DIM], sign_step[MAX_ARRAY_DIM];
int i, j, k;
int char_converted, change_default_start, change_default_stop;
size_t argv0_length;
// Needs dimension of 2 to contain ":" and terminating NULL as a result of sscanf calls below.
char c1[2], c2[2];
// Initialize
if ( argc < 2 )
{
Tcl_AppendResult( interp, "wrong # args, type: \"",
argv[0], " help\" for more info", (char *) NULL );
return TCL_ERROR;
}
for ( i = 0; i < MAX_ARRAY_DIM; i++ )
{
start[i] = 0;
stop[i] = matPtr->n[i];
step[i] = 1;
sign_step[i] = 1;
}
// First check for a matrix command
argc--; argv++;
c = argv[0][0];
argv0_length = strlen( argv[0] );
// dump -- send a nicely formatted listing of the array contents to stdout
// (very helpful for debugging)
if ( ( c == 'd' ) && ( strncmp( argv[0], "dump", argv0_length ) == 0 ) )
{
for ( i = start[0]; i < stop[0]; i++ )
{
for ( j = start[1]; j < stop[1]; j++ )
{
for ( k = start[2]; k < stop[2]; k++ )
{
( *matPtr->get )( (ClientData) matPtr, interp, I3D( i, j, k ), tmp );
printf( "%s ", tmp );
}
if ( matPtr->dim > 2 )
printf( "\n" );
}
if ( matPtr->dim > 1 )
printf( "\n" );
}
printf( "\n" );
return TCL_OK;
}
// delete -- delete the array
else if ( ( c == 'd' ) && ( strncmp( argv[0], "delete", argv0_length ) == 0 ) )
{
#ifdef DEBUG
fprintf( stderr, "Deleting array %s\n", name );
#endif
Tcl_DeleteCommand( interp, name );
return TCL_OK;
}
// filter
// Only works on 1d matrices
else if ( ( c == 'f' ) && ( strncmp( argv[0], "filter", argv0_length ) == 0 ) )
{
Mat_float *tmpMat;
int ifilt, nfilt;
if ( argc != 2 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"",
name, " ", argv[0], " num-passes\"",
(char *) NULL );
return TCL_ERROR;
}
if ( matPtr->dim != 1 || matPtr->type != TYPE_FLOAT )
{
Tcl_AppendResult( interp, "can only filter a 1d float matrix",
(char *) NULL );
return TCL_ERROR;
}
nfilt = atoi( argv[1] );
tmpMat = (Mat_float *) malloc( (size_t) ( matPtr->len + 2 ) * sizeof ( Mat_float ) );
for ( ifilt = 0; ifilt < nfilt; ifilt++ )
{
// Set up temporary filtering array. Use even boundary conditions.
j = 0; tmpMat[j] = matPtr->fdata[0];
for ( i = 0; i < matPtr->len; i++ )
{
j++; tmpMat[j] = matPtr->fdata[i];
}
j++; tmpMat[j] = matPtr->fdata[matPtr->len - 1];
// Apply 3-point binomial filter
for ( i = 0; i < matPtr->len; i++ )
{
j = i + 1;
matPtr->fdata[i] = 0.25 * ( tmpMat[j - 1] + 2 * tmpMat[j] + tmpMat[j + 1] );
}
}
free( (void *) tmpMat );
return TCL_OK;
}
// help
else if ( ( c == 'h' ) && ( strncmp( argv[0], "help", argv0_length ) == 0 ) )
{
Tcl_AppendResult( interp,
"Available subcommands:\n\
dump - return the values in the matrix as a string\n\
delete - delete the matrix (including the matrix command)\n\
filter - apply a three-point averaging (with a number of passes; ome-dimensional only)\n\
help - this information\n\
info - return the dimensions\n\
max - return the maximum value for the entire matrix or for the first N entries\n\
min - return the minimum value for the entire matrix or for the first N entries\n\
redim - resize the matrix (for one-dimensional matrices only)\n\
scale - scale the values by a given factor (for one-dimensional matrices only)\n\
\n\
Set and get values:\n\
matrix m f 3 3 3 - define matrix command \"m\", three-dimensional, floating-point data\n\
m 1 2 3 - return the value of matrix element [1,2,3]\n\
m 1 2 3 = 2.0 - set the value of matrix element [1,2,3] to 2.0 (do not return the value)\n\
m * 2 3 = 2.0 - set a slice consisting of all elements with second index 2 and third index 3 to 2.0",
(char *) NULL );
return TCL_OK;
}
// info
else if ( ( c == 'i' ) && ( strncmp( argv[0], "info", argv0_length ) == 0 ) )
{
for ( i = 0; i < matPtr->dim; i++ )
{
sprintf( tmp, "%d", matPtr->n[i] );
// Must avoid trailing space.
if ( i < matPtr->dim - 1 )
Tcl_AppendResult( interp, tmp, " ", (char *) NULL );
else
Tcl_AppendResult( interp, tmp, (char *) NULL );
}
return TCL_OK;
}
// max
else if ( ( c == 'm' ) && ( strncmp( argv[0], "max", argv0_length ) == 0 ) )
{
int len;
if ( argc < 1 || argc > 2 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"",
name, " ", argv[0], " ?length?\"",
(char *) NULL );
return TCL_ERROR;
}
if ( argc == 2 )
{
len = atoi( argv[1] );
if ( len < 0 || len > matPtr->len )
{
Tcl_AppendResult( interp, "specified length out of valid range",
(char *) NULL );
return TCL_ERROR;
}
}
else
len = matPtr->len;
if ( len == 0 )
{
Tcl_AppendResult( interp, "attempt to find maximum of array with zero elements",
(char *) NULL );
return TCL_ERROR;
}
switch ( matPtr->type )
{
case TYPE_FLOAT: {
Mat_float max = matPtr->fdata[0];
for ( i = 1; i < len; i++ )
max = MAX( max, matPtr->fdata[i] );
//sprintf(tmp, "%.17g", max);
Tcl_PrintDouble( interp, max, tmp );
Tcl_AppendResult( interp, tmp, (char *) NULL );
break;
}
case TYPE_INT: {
Mat_int max = matPtr->idata[0];
for ( i = 1; i < len; i++ )
max = MAX( max, matPtr->idata[i] );
sprintf( tmp, "%d", max );
Tcl_AppendResult( interp, tmp, (char *) NULL );
break;
}
}
return TCL_OK;
}
// min
else if ( ( c == 'm' ) && ( strncmp( argv[0], "min", argv0_length ) == 0 ) )
{
int len;
if ( argc < 1 || argc > 2 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"",
name, " ", argv[0], " ?length?\"",
(char *) NULL );
return TCL_ERROR;
}
if ( argc == 2 )
{
len = atoi( argv[1] );
if ( len < 0 || len > matPtr->len )
{
Tcl_AppendResult( interp, "specified length out of valid range",
(char *) NULL );
return TCL_ERROR;
}
}
else
len = matPtr->len;
if ( len == 0 )
{
Tcl_AppendResult( interp, "attempt to find minimum of array with zero elements",
(char *) NULL );
return TCL_ERROR;
}
switch ( matPtr->type )
{
case TYPE_FLOAT: {
Mat_float min = matPtr->fdata[0];
for ( i = 1; i < len; i++ )
min = MIN( min, matPtr->fdata[i] );
//sprintf(tmp, "%.17g", min);
Tcl_PrintDouble( interp, min, tmp );
Tcl_AppendResult( interp, tmp, (char *) NULL );
break;
}
case TYPE_INT: {
Mat_int min = matPtr->idata[0];
for ( i = 1; i < len; i++ )
min = MIN( min, matPtr->idata[i] );
sprintf( tmp, "%d", min );
Tcl_AppendResult( interp, tmp, (char *) NULL );
break;
}
}
return TCL_OK;
}
// redim
// Only works on 1d matrices
else if ( ( c == 'r' ) && ( strncmp( argv[0], "redim", argv0_length ) == 0 ) )
{
int newlen;
void *data;
if ( argc != 2 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"",
name, " ", argv[0], " length\"",
(char *) NULL );
return TCL_ERROR;
}
if ( matPtr->dim != 1 )
{
Tcl_AppendResult( interp, "can only redim a 1d matrix",
(char *) NULL );
return TCL_ERROR;
}
newlen = atoi( argv[1] );
switch ( matPtr->type )
{
case TYPE_FLOAT:
data = realloc( matPtr->fdata, (size_t) newlen * sizeof ( Mat_float ) );
if ( newlen != 0 && data == NULL )
{
Tcl_AppendResult( interp, "redim failed!",
(char *) NULL );
return TCL_ERROR;
}
matPtr->fdata = (Mat_float *) data;
for ( i = matPtr->len; i < newlen; i++ )
matPtr->fdata[i] = 0.0;
break;
case TYPE_INT:
data = realloc( matPtr->idata, (size_t) newlen * sizeof ( Mat_int ) );
if ( newlen != 0 && data == NULL )
{
Tcl_AppendResult( interp, "redim failed!",
(char *) NULL );
return TCL_ERROR;
}
matPtr->idata = (Mat_int *) data;
for ( i = matPtr->len; i < newlen; i++ )
matPtr->idata[i] = 0;
break;
}
matPtr->n[0] = matPtr->len = newlen;
// For later use in matrix assigments
// N.B. matPtr->len could be large so this check for success might
// be more than pro forma.
data = realloc( matPtr->indices, (size_t) ( matPtr->len ) * sizeof ( int ) );
if ( newlen != 0 && data == NULL )
{
Tcl_AppendResult( interp, "redim failed!", (char *) NULL );
return TCL_ERROR;
}
matPtr->indices = (int *) data;
return TCL_OK;
}
// scale
// Only works on 1d matrices
else if ( ( c == 's' ) && ( strncmp( argv[0], "scale", argv0_length ) == 0 ) )
{
Mat_float scale;
if ( argc != 2 )
{
Tcl_AppendResult( interp, "wrong # args: should be \"",
name, " ", argv[0], " scale-factor\"",
(char *) NULL );
return TCL_ERROR;
}
if ( matPtr->dim != 1 )
{
Tcl_AppendResult( interp, "can only scale a 1d matrix",
(char *) NULL );
return TCL_ERROR;
}
scale = atof( argv[1] );
switch ( matPtr->type )
{
case TYPE_FLOAT:
for ( i = 0; i < matPtr->len; i++ )
matPtr->fdata[i] *= scale;
break;
case TYPE_INT:
for ( i = 0; i < matPtr->len; i++ )
matPtr->idata[i] = (Mat_int) ( (Mat_float) ( matPtr->idata[i] ) * scale );
break;
}
return TCL_OK;
}
// Not a "standard" command, check the extension commands.
{
tclMatrixXtnsnDescr *p = head;
for (; p; p = p->next )
{
if ( ( c == p->cmd[0] ) && ( strncmp( argv[0], p->cmd, argv0_length ) == 0 ) )
{
#ifdef DEBUG
fprintf( stderr, "found a match, invoking %s\n", p->cmd );
#endif
return ( *( p->cmdproc ) )( matPtr, interp, --argc, ++argv );
}
}
}
// Must be a put or get of an array slice or array value.
// Determine array index slice adopting the same rules as the Python case
// documented at <https://docs.python.org/3/library/stdtypes.html#common-sequence-operations>
// Also, for the case where just a _single_ ":" is used to represent the
// complete range of indices for a dimension, the
// notation "*" can be used as well for backwards compatibility
// with the limited slice capability that was available before
// this full slice capability was implemented.
if ( argc < matPtr->dim )
{
Tcl_AppendResult( interp, "not enough dimensions specified for \"",
name, "\"", (char *) NULL );
return TCL_ERROR;
}
for ( i = 0; i < matPtr->dim; i++ )
{
// Because of argc and argv initialization and logic at end of
// loop which decrements argc and increments argv, argv[0]
// walks through the space-separated command-line strings that
// have been parsed by Tcl for each iteration of this loop.
// N.B. argv[0] should point to valid memory (i.e., one of the
// command-line strings) because of the above initial argc
// check and loop limits.
argv0_length = strlen( argv[0] );
// According to Linux man page for sscanf, a straightforward interpretation of the C standard
// indicates that %n should not be counted as a successful conversion when calculating
// the sscanf return value, but that man page also says should not count on that in general.
// So in the logic below use the ">= " test to allow for both possibilities.
// Default values if not determined below.
start[i] = 0;
stop[i] = matPtr->n[i];
step[i] = 1;
change_default_start = 0;
change_default_stop = 0;
// i:j:k
if ( sscanf( argv[0], "%d%1[:]%d%1[:]%d%n", start + i, c1, stop + i, c2, step + i, &char_converted ) >= 5 )
{
}
// i:j:
else if ( sscanf( argv[0], "%d%1[:]%d%1[:]%n", start + i, c1, stop + i, c2, &char_converted ) >= 4 )
{
}
// i:j
else if ( sscanf( argv[0], "%d%1[:]%d%n", start + i, c1, stop + i, &char_converted ) >= 3 )
{
}
// i::k
else if ( sscanf( argv[0], "%d%1[:]%1[:]%d%n", start + i, c1, c2, step + i, &char_converted ) >= 4 )
{
if ( step[i] < 0 )
{
change_default_stop = 1;
}
}
// i::
else if ( sscanf( argv[0], "%d%1[:]%1[:]%n", start + i, c1, c2, &char_converted ) >= 3 )
{
}
// i:
else if ( sscanf( argv[0], "%d%1[:]%n", start + i, c1, &char_converted ) >= 2 )
{
}
// :j:k
else if ( sscanf( argv[0], "%1[:]%d%1[:]%d%n", c1, stop + i, c2, step + i, &char_converted ) >= 4 )
{
if ( step[i] < 0 )
{
change_default_start = 1;
}
}
// :j:
else if ( sscanf( argv[0], "%1[:]%d%1[:]%n", c1, stop + i, c2, &char_converted ) >= 3 )
{
}
// :j
else if ( sscanf( argv[0], "%1[:]%d%n", c1, stop + i, &char_converted ) >= 2 )
{
}
// ::k
else if ( sscanf( argv[0], "%1[:]%1[:]%d%n", c1, c2, step + i, &char_converted ) >= 3 )
{
if ( step[i] < 0 )
{
change_default_start = 1;
change_default_stop = 1;
}
}
// ::
else if ( strcmp( argv[0], "::" ) == 0 )
char_converted = 2;
// :
else if ( strcmp( argv[0], ":" ) == 0 )
char_converted = 1;
// *
else if ( strcmp( argv[0], "*" ) == 0 )
char_converted = 1;
// i
else if ( sscanf( argv[0], "%d%n", start + i, &char_converted ) >= 1 )
{
// Special checks for the pure index case (just like in Python).
if ( start[i] < 0 )
start[i] += matPtr->n[i];
if ( start[i] < 0 || start[i] > matPtr->n[i] - 1 )
{
sprintf( tmp, "Array index %d out of bounds: original string = \"%s\"; transformed = %d; min = 0; max = %d\n",
i, argv[0], start[i], matPtr->n[i] - 1 );
Tcl_AppendResult( interp, tmp, (char *) NULL );
return TCL_ERROR;
}
stop[i] = start[i] + 1;
}
else
{
sprintf( tmp, "Array slice for index %d with original string = \"%s\" could not be parsed\n",
i, argv[0] );
Tcl_AppendResult( interp, tmp, (char *) NULL );
return TCL_ERROR;
}
// Check, convert and sanitize start[i], stop[i], and step[i] values.
if ( step[i] == 0 )
{
Tcl_AppendResult( interp, "step part of slice must be non-zero",
(char *) NULL );
return TCL_ERROR;
}
sign_step[i] = ( step[i] > 0 ) ? 1 : -1;
if ( (size_t) char_converted > argv0_length )
{
Tcl_AppendResult( interp, "MatrixCmd, internal logic error",
(char *) NULL );
return TCL_ERROR;
}
if ( (size_t) char_converted < argv0_length )
{
sprintf( tmp, "Array slice for index %d with original string = \"%s\" "
"had trailing unparsed characters\n", i, argv[0] );
Tcl_AppendResult( interp, tmp, (char *) NULL );
return TCL_ERROR;
}
if ( start[i] < 0 )
start[i] += matPtr->n[i];
start[i] = MAX( 0, MIN( matPtr->n[i] - 1, start[i] ) );
if ( change_default_start )
start[i] = matPtr->n[i] - 1;
if ( stop[i] < 0 )
stop[i] += matPtr->n[i];
if ( step[i] > 0 )
stop[i] = MAX( 0, MIN( matPtr->n[i], stop[i] ) );
else
stop[i] = MAX( -1, MIN( matPtr->n[i], stop[i] ) );
if ( change_default_stop )
stop[i] = -1;
// At this stage, start, stop, and step (!=0), correspond to
// i, j, and k (!=0) in the slice documentation given at
// <https://docs.python.org/3/library/stdtypes.html#common-sequence-operations>.
// with all checks and conversions made. According to note 5
// of that documentation (translated to the present start,
// stop and step notation and also subject to the clarifying
// discussion in <http://bugs.python.org/issue28614>) the
// array index should take on the values
// index = start + n*step
// where n 0, 1, etc., with that sequence
// terminated just before index = stop is reached.
// Therefore, the for loop for a typical index when step is positive should read
// for ( i = start[0]; i < stop[0]; i += step[0] )
// and when step is negative should read
// for ( i = start[0]; i > stop[0]; i += step[0] )
// So to cover both cases, we use for loops of the
// following form below
// for ( i = start[0]; sign_step[0]*i < stop[0]; i += step[0] )
// where stop has been transformed as follows:
#ifdef DEBUG
fprintf( stderr, "Array slice for index %d with original string = \"%s\" "
"yielded start[i], stop[i], transformed stop[i], and step[i] = "
"%d, %d, ", i, argv[0], start[i], stop[i] );
#endif
stop[i] = sign_step[i] * stop[i];
#ifdef DEBUG
fprintf( stderr, "%d, %d\n", stop[i], step[i] );
#endif
argc--; argv++;
}
// If there is an "=" after indices, it's a put. Do error checking.
if ( argc > 0 )
{
put = 1;
if ( strcmp( argv[0], "=" ) == 0 )
{
argc--; argv++;
if ( argc == 0 )
{
Tcl_AppendResult( interp, "no value specified",
(char *) NULL );
return TCL_ERROR;
}
}
else
{
Tcl_AppendResult( interp, "extra characters after indices: \"",
argv[0], "\"", (char *) NULL );
return TCL_ERROR;
}
}
// Calculate which indices will be used for the given index slices.
matPtr->nindices = 0;
for ( i = start[0]; sign_step[0] * i < stop[0]; i += step[0] )
{
for ( j = start[1]; sign_step[1] * j < stop[1]; j += step[1] )
{
for ( k = start[2]; sign_step[2] * k < stop[2]; k += step[2] )
{
matPtr->indices[matPtr->nindices++] = I3D( i, j, k );
}
}
}
// Do the get/put.
// The loop over all elements takes care of the multi-element cases.
if ( put )
{
char *endptr;
// Check whether argv[0] could be interpreted as a raw single
// number with no trailing characters.
switch ( matPtr->type )
{
case TYPE_FLOAT:
strtod( argv[0], &endptr );
break;
case TYPE_INT:
strtol( argv[0], &endptr, 10 );
break;
}
if ( argc == 1 && *argv[0] != '\0' && *endptr == '\0' )
{
// If _all_ characters of single RHS string can be
// successfully read as a single number, then assign all
// matrix elements with indices in matPtr->indices to that
// single number.
for ( i = 0; i < matPtr->nindices; i++ )
( *matPtr->put )( (ClientData) matPtr, interp, matPtr->indices[i], argv[0] );
}
else
{
// If RHS cannot be successfully read as a single number,
// then assume it is a collection of numbers (in list form
// or white-space separated). Concatenate all remaining
// elements of argv into list form, then use MatrixAssign
// to assign all matrix elements with indices in
// matPtr->indices using all (deep) non-list elements of
// that list.
int offset = 0;
size_t concatenated_argv_len;
char *concatenated_argv;
const char *const_concatenated_argv;
// Prepare concatenated_argv string consisting of
// "{argv[0] argv[1] ... argv[argc-1]}" so that _any_
// space-separated bunch of numerical arguments or lists
// of those will work. Account for beginning and ending
// curly braces and trailing \0.
concatenated_argv_len = 3;
for ( i = 0; i < argc; i++ )
// Account for length of string + space separator.
concatenated_argv_len += strlen( argv[i] ) + 1;
concatenated_argv = (char *) malloc( concatenated_argv_len * sizeof ( char ) );
// Prepare for string concatenation using strcat
concatenated_argv[0] = '\0';
strcat( concatenated_argv, "{" );
for ( i = 0; i < argc; i++ )
{
strcat( concatenated_argv, argv[i] );
strcat( concatenated_argv, " " );
}
strcat( concatenated_argv, "}" );
const_concatenated_argv = (const char *) concatenated_argv;
// Assign matrix elements using all numbers collected from
// the potentially deep list, const_concatenated_argv.
if ( MatrixAssign( interp, matPtr, 0, &offset, 1, &const_concatenated_argv ) != TCL_OK )
{
free( (void *) concatenated_argv );
return TCL_ERROR;
}
free( (void *) concatenated_argv );
}
}
else
{
// get
for ( i = 0; i < matPtr->nindices; i++ )
{
( *matPtr->get )( (ClientData) matPtr, interp, matPtr->indices[i], tmp );
if ( i < matPtr->nindices - 1 )
Tcl_AppendResult( interp, tmp, " ", (char *) NULL );
else
Tcl_AppendResult( interp, tmp, (char *) NULL );
}
}
return TCL_OK;
}
//--------------------------------------------------------------------------
//
// Routines to handle Matrix get/put dependent on type:
//
// MatrixPut_f MatrixGet_f
// MatrixPut_i MatrixGet_i
//
// A "put" converts from string format to the intrinsic type, storing into
// the array.
//
// A "get" converts from the intrinsic type to string format, storing into
// a string buffer.
//
//--------------------------------------------------------------------------
static void
MatrixPut_f( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, const char *string )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
matPtr->fdata[index] = atof( string );
}
static void
MatrixGet_f( ClientData clientData, Tcl_Interp* interp, int index, char *string )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
double value = matPtr->fdata[index];
//sprintf(string, "%.17g", value);
Tcl_PrintDouble( interp, value, string );
}
static void
MatrixPut_i( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, const char *string )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
if ( ( strlen( string ) > 2 ) && ( strncmp( string, "0x", 2 ) == 0 ) )
{
matPtr->idata[index] = (Mat_int) strtoul( &string[2], NULL, 16 );
}
else
matPtr->idata[index] = atoi( string );
}
static void
MatrixGet_i( ClientData clientData, Tcl_Interp* PL_UNUSED( interp ), int index, char *string )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
sprintf( string, "%d", matPtr->idata[index] );
}
//--------------------------------------------------------------------------
//
// DeleteMatrixVar --
//
// Causes matrix command to be deleted. Invoked when variable
// associated with matrix command is unset.
//
// Results:
// None.
//
// Side effects:
// See DeleteMatrixCmd.
//
//--------------------------------------------------------------------------
static char *
DeleteMatrixVar( ClientData clientData,
Tcl_Interp * PL_UNUSED( interp ), char * PL_UNUSED( name1 ), char * PL_UNUSED( name2 ), int PL_UNUSED( flags ) )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
Tcl_CmdInfo infoPtr;
char *name;
dbug_enter( "DeleteMatrixVar" );
if ( matPtr->tracing != 0 )
{
matPtr->tracing = 0;
name = (char *) malloc( strlen( matPtr->name ) + 1 );
strcpy( name, matPtr->name );
#ifdef DEBUG
if ( Tcl_GetCommandInfo( matPtr->interp, matPtr->name, &infoPtr ) )
{
if ( Tcl_DeleteCommand( matPtr->interp, matPtr->name ) == TCL_OK )
fprintf( stderr, "Deleted command %s\n", name );
else
fprintf( stderr, "Unable to delete command %s\n", name );
}
#else
if ( Tcl_GetCommandInfo( matPtr->interp, matPtr->name, &infoPtr ) )
Tcl_DeleteCommand( matPtr->interp, matPtr->name );
#endif
free( (void *) name );
}
return (char *) NULL;
}
//--------------------------------------------------------------------------
//
// DeleteMatrixCmd --
//
// Releases all the resources allocated to the matrix command.
// Invoked just before a matrix command is removed from an interpreter.
//
// Note: If the matrix has tracing enabled, it means the user
// explicitly deleted a non-persistent matrix. Not a good idea,
// because eventually the local variable that was being traced will
// become unset and the matrix data will be referenced in
// DeleteMatrixVar. So I've massaged this so that at worst it only
// causes a minor memory leak instead of imminent program death.
//
// Results:
// None.
//
// Side effects:
// All memory associated with the matrix operator is freed (usually).
//
//--------------------------------------------------------------------------
static void
DeleteMatrixCmd( ClientData clientData )
{
tclMatrix *matPtr = (tclMatrix *) clientData;
Tcl_HashEntry *hPtr;
dbug_enter( "DeleteMatrixCmd" );
#ifdef DEBUG
fprintf( stderr, "Freeing space associated with matrix %s\n", matPtr->name );
#endif
// Remove hash table entry
hPtr = Tcl_FindHashEntry( &matTable, matPtr->name );
if ( hPtr != NULL )
Tcl_DeleteHashEntry( hPtr );
// Free data
if ( matPtr->fdata != NULL )
{
free( (void *) matPtr->fdata );
matPtr->fdata = NULL;
}
if ( matPtr->idata != NULL )
{
free( (void *) matPtr->idata );
matPtr->idata = NULL;
}
if ( matPtr->indices != NULL )
{
free( (void *) matPtr->indices );
matPtr->indices = NULL;
}
// Attempt to turn off tracing if possible.
if ( matPtr->tracing )
{
if ( Tcl_VarTraceInfo( matPtr->interp, matPtr->name, TCL_TRACE_UNSETS,
(Tcl_VarTraceProc *) DeleteMatrixVar, NULL ) != NULL )
{
matPtr->tracing = 0;
Tcl_UntraceVar( matPtr->interp, matPtr->name, TCL_TRACE_UNSETS,
(Tcl_VarTraceProc *) DeleteMatrixVar, (ClientData) matPtr );
Tcl_UnsetVar( matPtr->interp, matPtr->name, 0 );
}
}
// Free name.
if ( matPtr->name != NULL )
{
free( (void *) matPtr->name );
matPtr->name = NULL;
}
// Free tclMatrix
if ( !matPtr->tracing )
free( (void *) matPtr );
#ifdef DEBUG
else
fprintf( stderr, "OOPS! You just lost %d bytes\n", sizeof ( tclMatrix ) );
#endif
}
|