1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
# x08.py PLplot demo for Python
#
# Copyright (C) 2004-2016 Alan W. Irwin
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
from numpy import *
# These values must be odd, for the middle
# of the index range to be an integer, and thus
# to correspond to the exact floating point centre
# of the sombrero.
XPTS = 35 # Data points in x
YPTS = 45 # Data points in y
alt = [60.0, 40.0]
az = [30.0, -30.0]
title = ["#frPLplot Example 8 - Alt=60, Az=30",
"#frPLplot Example 8 - Alt=40, Az=-30"]
# Routine for defining a specific color map 1 in HLS space.
# if gray is true, use basic grayscale variation from half-dark to light.
# otherwise use false color variation from blue (240 deg) to red (360 deg).
def cmap1_init(w, gray):
# Independent variable of control points.
i = array((0., 1.))
if gray:
# Hue for control points. Doesn't matter since saturation is zero.
h = array((0., 0.))
# Lightness ranging from half-dark (for interest) to light.
l = array((0.5, 1.))
# Gray scale has zero saturation
s = array((0., 0.))
else:
# Hue ranges from blue (240 deg) to red (0 or 360 deg)
h = array((240., 0.))
# Lightness and saturation are constant (values taken from C example).
l = array((0.6, 0.6))
s = array((0.8, 0.8))
# number of cmap1 colours is 256 in this case.
w.plscmap1n(256)
# Interpolate between control points to set up cmap1.
w.plscmap1l(0, i, h, l, s)
# main
#
# Does a series of 3-d plots for a given data set, with different
# viewing options in each plot.
def main(w):
rosen = 0
dx = 2. / float( XPTS - 1 )
dy = 2. / float( YPTS - 1 )
x = -1. + dx*arange(XPTS)
y = -1. + dy*arange(YPTS)
if rosen == 1:
x = 1.5*x
y = 0.5 + y
x.shape = (-1,1)
r2 = (x*x) + (y*y)
if rosen == 1:
z = (1. - x)*(1. - x) + 100 * (x*x - y)*(x*x - y)
# The log argument might be zero for just the right grid.
z = log(choose(greater(z,0.), (exp(-5.), z)))
else:
z = exp(-r2)*cos((2.0*pi)*sqrt(r2))
x.shape = (-1,)
zmin = min(z.flat)
zmax = max(z.flat)
nlevel = 10
step = (zmax-zmin)/(nlevel+1)
clevel = zmin + step + arange(nlevel)*step
# Set up data and arrays for w.plsurf3dl call below.
indexxmin = 0
indexxmax = XPTS
# Must be same shape as z, and a row of z.
zlimited = empty(z.shape)
indexymin = empty(z.shape[0], dtype=int)
indexymax = empty(z.shape[0], dtype=int)
# Parameters of ellipse that limits the data.
x0 = 0.5*(XPTS - 1)
a = 0.9*x0
y0 = 0.5*(YPTS - 1)
b = 0.7*y0
for i in range(int(indexxmin), int(indexxmax)):
square_root = sqrt(1. - minimum(1., ((double(i) - x0)/a)**2))
# Add 0.5 to find nearest integer and therefore preserve symmetry
# with regard to lower and upper bound of y range.
indexymin[i] = maximum(0, int(0.5 + y0 - b*square_root))
# indexymax calculated with the convention that it is 1
# greater than highest valid index.
indexymax[i] = minimum(YPTS, 1 + int(0.5 + y0 + b*square_root))
zlimited[i][indexymin[i]:indexymax[i]] = z[i][indexymin[i]:indexymax[i]]
w.pllightsource(1., 1., 1.)
for k in range(2):
for ifshade in range(5):
w.pladv(0)
w.plvpor(0.0, 1.0, 0.0, 0.9)
w.plwind(-1.0, 1.0, -0.9, 1.1)
w.plcol0(3)
w.plmtex("t", 1.0, 0.5, 0.5, title[k])
w.plcol0(1)
if rosen == 1:
w.plw3d(1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax,
alt[k], az[k])
else:
w.plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax,
alt[k], az[k])
w.plbox3("bnstu", "x axis", 0.0, 0,
"bnstu", "y axis", 0.0, 0,
"bcdmnstuv", "z axis", 0.0, 0)
w.plcol0(2)
if ifshade == 0:
# diffuse light surface plot.
# set up modified gray scale cmap1.
cmap1_init(w, 1)
w.plsurf3d(x, y, z, 0, ())
elif ifshade == 1:
# magnitude colored plot.
cmap1_init(w, 0)
w.plsurf3d(x, y, z, w.MAG_COLOR, ())
elif ifshade == 2:
# magnitude colored plot with faceted squares
cmap1_init(w, 0)
w.plsurf3d(x, y, z, w.MAG_COLOR | w.FACETED, ())
elif ifshade == 3:
# magnitude colored plot with contours
cmap1_init(w, 0)
w.plsurf3d(x, y, z, w.MAG_COLOR | w.SURF_CONT | w.BASE_CONT, clevel)
elif ifshade == 4:
# magnitude colored plot with contoursmagnitude colored plot and index limits
cmap1_init(w, 0)
w.plsurf3dl(x, y, zlimited, w.MAG_COLOR | w.SURF_CONT | w.BASE_CONT, clevel, indexxmin, indexymin, indexymax)
# Restore defaults
# cmap1 default color palette.
w.plspal1("cmap1_default.pal",1)
# Must be done independently because otherwise this changes output files
# and destroys agreement with C examples.
#w.plcol0(1)
|