File: x08.py

package info (click to toggle)
plplot 5.15.0%2Bdfsg2-15
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,396 kB
  • sloc: ansic: 79,703; xml: 28,583; cpp: 20,033; ada: 19,456; tcl: 12,081; f90: 11,431; ml: 7,276; java: 6,863; python: 6,792; sh: 3,274; perl: 828; lisp: 75; makefile: 74; sed: 34; fortran: 6
file content (165 lines) | stat: -rw-r--r-- 5,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# x08.py PLplot demo for Python
#
# Copyright (C) 2004-2016  Alan W. Irwin
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

from numpy import *

# These values must be odd, for the middle
# of the index range to be an integer, and thus
# to correspond to the exact floating point centre
# of the sombrero.

XPTS = 35               # Data points in x
YPTS = 45               # Data points in y

alt = [60.0, 40.0]

az = [30.0, -30.0]

title = ["#frPLplot Example 8 - Alt=60, Az=30",
         "#frPLplot Example 8 - Alt=40, Az=-30"]

# Routine for defining a specific color map 1 in HLS space.
# if gray is true, use basic grayscale variation from half-dark to light.
# otherwise use false color variation from blue (240 deg) to red (360 deg).
def cmap1_init(w, gray):
    # Independent variable of control points.
    i = array((0., 1.))
    if gray:
        # Hue for control points.  Doesn't matter since saturation is zero.
        h = array((0., 0.))
        # Lightness ranging from half-dark (for interest) to light.
        l = array((0.5, 1.))
        # Gray scale has zero saturation
        s = array((0., 0.))
    else:
        # Hue ranges from blue (240 deg) to red (0 or 360 deg)
        h = array((240., 0.))
        # Lightness and saturation are constant (values taken from C example).
        l = array((0.6, 0.6))
        s = array((0.8, 0.8))

    # number of cmap1 colours is 256 in this case.
    w.plscmap1n(256)
    # Interpolate between control points to set up cmap1.
    w.plscmap1l(0, i, h, l, s)
# main
#
# Does a series of 3-d plots for a given data set, with different
# viewing options in each plot.

def main(w):

    rosen = 0
    dx = 2. / float( XPTS - 1 )
    dy = 2. / float( YPTS - 1 )

    x = -1. + dx*arange(XPTS)
    y = -1. + dy*arange(YPTS)
    if rosen == 1:
        x = 1.5*x
        y = 0.5 + y
    x.shape = (-1,1)
    r2 = (x*x) + (y*y)
    if rosen == 1:
        z = (1. - x)*(1. - x) + 100 * (x*x - y)*(x*x - y)
        # The log argument might be zero for just the right grid.
        z = log(choose(greater(z,0.), (exp(-5.), z)))
    else:
        z = exp(-r2)*cos((2.0*pi)*sqrt(r2))

    x.shape = (-1,)
    zmin = min(z.flat)
    zmax = max(z.flat)
    nlevel = 10
    step = (zmax-zmin)/(nlevel+1)
    clevel = zmin + step + arange(nlevel)*step

    # Set up data and arrays for w.plsurf3dl call below.
    indexxmin = 0
    indexxmax = XPTS
    # Must be same shape as z, and a row of z.
    zlimited = empty(z.shape)
    indexymin = empty(z.shape[0], dtype=int)
    indexymax = empty(z.shape[0], dtype=int)
    # Parameters of ellipse that limits the data.
    x0 = 0.5*(XPTS - 1)
    a = 0.9*x0
    y0 = 0.5*(YPTS - 1)
    b = 0.7*y0
    for i in range(int(indexxmin), int(indexxmax)):
         square_root = sqrt(1. - minimum(1., ((double(i) - x0)/a)**2))
         # Add 0.5 to find nearest integer and therefore preserve symmetry
         # with regard to lower and upper bound of y range.
         indexymin[i] = maximum(0, int(0.5 + y0 - b*square_root))
         # indexymax calculated with the convention that it is 1
         # greater than highest valid index.
         indexymax[i] = minimum(YPTS, 1 + int(0.5 + y0 + b*square_root))
         zlimited[i][indexymin[i]:indexymax[i]] = z[i][indexymin[i]:indexymax[i]]

    w.pllightsource(1., 1., 1.)

    for k in range(2):
        for ifshade in range(5):
            w.pladv(0)
            w.plvpor(0.0, 1.0, 0.0, 0.9)
            w.plwind(-1.0, 1.0, -0.9, 1.1)
            w.plcol0(3)
            w.plmtex("t", 1.0, 0.5, 0.5, title[k])
            w.plcol0(1)
            if rosen == 1:
                w.plw3d(1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax,
                alt[k], az[k])
            else:
                w.plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax,
                alt[k], az[k])
            w.plbox3("bnstu", "x axis", 0.0, 0,
            "bnstu", "y axis", 0.0, 0,
            "bcdmnstuv", "z axis", 0.0, 0)

            w.plcol0(2)
            if ifshade == 0:
                # diffuse light surface plot.
                # set up modified gray scale cmap1.
                cmap1_init(w, 1)
                w.plsurf3d(x, y, z, 0, ())
            elif ifshade == 1:
                # magnitude colored plot.
                cmap1_init(w, 0)
                w.plsurf3d(x, y, z, w.MAG_COLOR, ())
            elif ifshade == 2:
                # magnitude colored plot with faceted squares
                cmap1_init(w, 0)
                w.plsurf3d(x, y, z, w.MAG_COLOR | w.FACETED, ())
            elif ifshade == 3:
                # magnitude colored plot with contours
                cmap1_init(w, 0)
                w.plsurf3d(x, y, z, w.MAG_COLOR | w.SURF_CONT | w.BASE_CONT, clevel)
            elif ifshade == 4:
                # magnitude colored plot with contoursmagnitude colored plot and index limits
                cmap1_init(w, 0)
                w.plsurf3dl(x, y, zlimited, w.MAG_COLOR | w.SURF_CONT | w.BASE_CONT, clevel, indexxmin, indexymin, indexymax)

    # Restore defaults
    # cmap1 default color palette.
    w.plspal1("cmap1_default.pal",1)

    # Must be done independently because otherwise this changes output files
    # and destroys agreement with C examples.
    #w.plcol0(1)