1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
// plarc()
//
// Copyright (C) 2009 Hezekiah M. Carty
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//! @file
//! Functions for drawing an arc.
//!
#include "plplotP.h"
#define CIRCLE_SEGMENTS ( PL_MAXPOLY - 1 )
#define DEG_TO_RAD( x ) ( ( x ) * M_PI / 180.0 )
void plarc_approx( PLFLT x, PLFLT y, PLFLT a, PLFLT b, PLFLT angle1, PLFLT angle2, PLFLT rotate, PLBOOL fill );
//--------------------------------------------------------------------------
// plarc_approx : Plot an approximated arc with a series of lines
//
//! Takes the same arguments, with the same units, as c_plarc below.
//! This is the fallback function in the event that the output
//! device does not have native support for drawing arcs.
//!
//! @param x Center coordinate of the arc in x.
//! @param y Center coordinate of the arc in y.
//! @param a Radius of the arcs major axis.
//! @param b Radius of the arcs minor axis.
//! @param angle1 Start angle in degrees.
//! @param angle2 End angle in degrees.
//! @param rotate How much to rotate the arc?
//! @param fill Fill the arc.
//!
//--------------------------------------------------------------------------
void
plarc_approx( PLFLT x, PLFLT y, PLFLT a, PLFLT b, PLFLT angle1, PLFLT angle2, PLFLT rotate, PLBOOL fill )
{
PLINT i;
PLFLT theta0, theta_step, theta, d_angle;
PLINT segments;
PLFLT xs[CIRCLE_SEGMENTS + 1], ys[CIRCLE_SEGMENTS + 1];
PLFLT cphi, sphi, ctheta, stheta;
// The difference between the start and end angles
d_angle = DEG_TO_RAD( angle2 - angle1 );
if ( fabs( d_angle ) > M_PI * 2.0 )
d_angle = M_PI * 2.0;
// Calculate cosine and sine of angle of major axis wrt the x axis
cphi = cos( DEG_TO_RAD( rotate ) );
sphi = sin( DEG_TO_RAD( rotate ) );
// The number of line segments used to approximate the arc
segments = (PLINT) ( fabs( d_angle ) / ( 2.0 * M_PI ) * CIRCLE_SEGMENTS );
// Always use at least 2 arc points, otherwise fills will break.
if ( segments < 2 )
segments = 2;
// The start angle in radians and number of radians in each approximating
// segment.
theta0 = DEG_TO_RAD( angle1 );
theta_step = d_angle / ( segments - 1 );
// The coordinates for the circle outline
for ( i = 0; i < segments; i++ )
{
theta = theta0 + theta_step * (PLFLT) i;
ctheta = cos( theta );
stheta = sin( theta );
xs[i] = x + a * ctheta * cphi - b * stheta * sphi;
ys[i] = y + a * ctheta * sphi + b * stheta * cphi;
}
if ( fill )
{
// Add the center point if we aren't drawing a circle
if ( fabs( d_angle ) < M_PI * 2.0 )
{
xs[segments] = x;
ys[segments] = y;
segments++;
}
// Draw a filled arc
plfill( segments, xs, ys );
}
else
{
// Draw the arc outline
plline( segments, xs, ys );
}
}
//--------------------------------------------------------------------------
// plarc : Plot an arc
//
//! Plot an Arc.
//! Takes the following arguments:
//!
//! x, y:
//! x and y coordinates for the center of the arc
//!
//! a, b:
//! Radius of the arc's major and minor axes
//!
//! angle1:
//! Start angle (degrees)
//!
//! angle2:
//! End angle (degrees)
//!
//! fill:
//! Should the arc be filled
//!
//! @param x Center coordinate of the arc in x.
//! @param y Center coordinate of the arc in y.
//! @param a Radius of the arcs major axis.
//! @param b Radius of the arcs minor axis.
//! @param angle1 Start angle in degrees.
//! @param angle2 End angle in degrees.
//! @param rotate How much to rotate the arc?
//! @param fill Fill the arc.
//!
//
//--------------------------------------------------------------------------
void
c_plarc( PLFLT x, PLFLT y, PLFLT a, PLFLT b, PLFLT angle1, PLFLT angle2, PLFLT rotate, PLBOOL fill )
{
PLINT xscl[2], yscl[2];
PLINT clpxmi, clpxma, clpymi, clpyma;
arc_struct *arc_info;
// TODO: For now, only unrotated plots use the driver-accelerated path.
if ( plsc->dev_arc && plsc->diorot == 0 )
{
arc_info = (arc_struct *) malloc( (size_t) sizeof ( arc_struct ) );
xscl[0] = plP_wcpcx( x - a );
xscl[1] = plP_wcpcx( x + a );
yscl[0] = plP_wcpcy( y - b );
yscl[1] = plP_wcpcy( y + b );
difilt( xscl, yscl, 2, &clpxmi, &clpxma, &clpymi, &clpyma );
arc_info->x = 0.5 * ( xscl[1] + xscl[0] );
arc_info->y = 0.5 * ( yscl[1] + yscl[0] );
arc_info->a = 0.5 * ( xscl[1] - xscl[0] );
arc_info->b = 0.5 * ( yscl[1] - yscl[0] );
arc_info->angle1 = angle1;
arc_info->angle2 = angle2;
arc_info->rotate = rotate;
arc_info->fill = fill;
plP_esc( PLESC_ARC, arc_info );
free( arc_info );
}
else
{
plarc_approx( x, y, a, b, angle1, angle2, rotate, fill );
}
}
|