1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
|
// Functions to shade regions on the basis of value.
// Can be used to shade contour plots or alone.
// Copyright 1993 Wesley Ebisuzaki
//
// Copyright (C) 2004-2014 Alan W. Irwin
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//
//--------------------------------------------------------------------------
// Call syntax for plshade():
//
// void plshade(PLFLT *a, PLINT nx, PLINT ny, char *defined,
// PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
// PLFLT shade_min, PLFLT shade_max,
// PLINT sh_color, PLFLT sh_width, PLINT min_color, PLFLT min_width,
// PLINT max_color, PLFLT max_width, void (*fill)(), PLINT
// rectangular, ...)
//
// arguments:
//
// PLFLT &(a[0][0])
//
// Contains array to be plotted. The array must have been declared as
// PLFLT a[nx][ny]. See following note on fortran-style arrays.
//
// PLINT nx, ny
//
// Dimension of array "a".
//
// char &(defined[0][0])
//
// Contains array of flags, 1 = data is valid, 0 = data is not valid.
// This array determines which sections of the data is to be plotted.
// This argument can be NULL if all the values are valid. Must have been
// declared as char defined[nx][ny].
//
// PLFLT xmin, xmax, ymin, ymax
//
// Defines the "grid" coordinates. The data a[0][0] has a position of
// (xmin,ymin).
//
// void (*mapform)()
//
// Transformation from `grid' coordinates to world coordinates. This
// pointer to a function can be NULL in which case the grid coordinates
// are the same as the world coordinates.
//
// PLFLT shade_min, shade_max
//
// Defines the interval to be shaded. If shade_max <= shade_min, plshade
// does nothing.
//
// PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width
//
// Defines color map, color map index, and width used by the fill pattern.
//
// PLINT min_color, PLFLT min_width, PLINT max_color, PLFLT max_width
//
// Defines pen color, width used by the boundary of shaded region. The min
// values are used for the shade_min boundary, and the max values are used
// on the shade_max boundary. Set color and width to zero for no plotted
// boundaries.
//
// void (*fill)()
//
// Routine used to fill the region. Use plfill. Future version of plplot
// may have other fill routines.
//
// PLINT rectangular
//
// Flag. Set to 1 if rectangles map to rectangles after (*mapform)() else
// set to zero. If rectangular is set to 1, plshade tries to save time by
// filling large rectangles. This optimization fails if (*mapform)()
// distorts the shape of rectangles. For example a plot in polor
// coordinates has to have rectangular set to zero.
//
// Example mapform's:
//
// Grid to world coordinate transformation.
// This example goes from a r-theta to x-y for a polar plot.
//
// void mapform(PLINT n, PLFLT *x, PLFLT *y) {
// int i;
// double r, theta;
// for (i = 0; i < n; i++) {
// r = x[i];
// theta = y[i];
// x[i] = r*cos(theta);
// y[i] = r*sin(theta);
// }
// }
//
// Grid was in cm, convert to world coordinates in inches.
// Expands in x direction.
//
// void mapform(PLINT n, PLFLT *x, PLFLT *y) {
// int i;
// for (i = 0; i < n; i++) {
// x[i] = (1.0 / 2.5) * x[i];
// y[i] = (1.0 / 2.5) * y[i];
// }
// }
//
//--------------------------------------------------------------------------
#include "plplotP.h"
#include <float.h>
#define NEG 1
#define POS 8
#define OK 0
#define UNDEF 64
#define NUMBER_BISECTIONS 10
#define linear( val1, val2, level ) ( ( level - val1 ) / ( val2 - val1 ) )
// Global variables
static PLFLT sh_max, sh_min;
static int min_points, max_points, n_point;
static int min_pts[4], max_pts[4];
static PLINT pen_col_min, pen_col_max;
static PLFLT pen_wd_min, pen_wd_max;
static PLFLT int_val;
// Function prototypes
static void
set_cond( register int *cond, register PLFLT *a, register PLINT n );
static int
find_interval( PLFLT a0, PLFLT a1, PLINT c0, PLINT c1, PLFLT *x );
static void
selected_polygon( PLFILL_callback fill, PLDEFINED_callback defined,
PLFLT_VECTOR x, PLFLT_VECTOR y, PLINT v1, PLINT v2, PLINT v3, PLINT v4 );
static void
exfill( PLFILL_callback fill, PLDEFINED_callback defined,
int n, PLFLT_VECTOR x, PLFLT_VECTOR y );
static void
big_recl( int *cond_code, register int ny, int dx, int dy,
int *ix, int *iy );
static void
draw_boundary( PLINT slope, PLFLT *x, PLFLT *y );
static PLINT
plctest( PLFLT *x, PLFLT level );
static PLINT
plctestez( PLFLT *a, PLINT nx, PLINT ny, PLINT ix,
PLINT iy, PLFLT level );
static void
plshade_int( PLF2EVAL_callback f2eval, PLPointer f2eval_data,
PLF2EVAL_callback c2eval, PLPointer c2eval_data,
PLDEFINED_callback defined,
PLINT nx, PLINT ny,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data );
// N.B. This routine only needed by the Fortran interface to distinguish
// the case where pltr and pltr_data are NULL. So don't put declaration in
// header which might encourage others to use this in some other context.
PLDLLIMPEXP void
plshades_null( PLFLT_MATRIX a, PLINT nx, PLINT ny, PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT_VECTOR clevel, PLINT nlevel, PLFLT fill_width,
PLINT cont_color, PLFLT cont_width,
PLFILL_callback fill, PLINT rectangular )
{
plfshades( plf2ops_c(), (PLPointer) a, nx, ny, defined,
xmin, xmax, ymin, ymax,
clevel, nlevel, fill_width,
cont_color, cont_width,
fill, rectangular,
NULL, NULL );
}
//--------------------------------------------------------------------------
// plshades()
//
// Shade regions via a series of calls to plshade.
// All arguments are the same as plshade except the following:
// clevel is a pointer to an array of values representing
// the shade edge values, nlevel-1 is
// the number of different shades, (nlevel is the number of shade edges),
// fill_width is the pattern fill width, and cont_color and cont_width
// are the color and width of the contour drawn at each shade edge.
// (if cont_color <= 0 or cont_width <=0, no such contours are drawn).
//--------------------------------------------------------------------------
void c_plshades( PLFLT_MATRIX a, PLINT nx, PLINT ny, PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT_VECTOR clevel, PLINT nlevel, PLFLT fill_width,
PLINT cont_color, PLFLT cont_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
plfshades( plf2ops_c(), (PLPointer) a, nx, ny, defined,
xmin, xmax, ymin, ymax,
clevel, nlevel, fill_width,
cont_color, cont_width,
fill, rectangular,
pltr, pltr_data );
}
//--------------------------------------------------------------------------
// plfshades()
//
// Shade regions via a series of calls to plfshade1.
// All arguments are the same as plfshade1 except the following:
// clevel is a pointer to an array of values representing
// the shade edge values, nlevel-1 is
// the number of different shades, (nlevel is the number of shade edges),
// fill_width is the pattern fill width, and cont_color and cont_width
// are the color and width of the contour drawn at each shade edge.
// (if cont_color <= 0 or cont_width <=0, no such contours are drawn).
//--------------------------------------------------------------------------
void
plfshades( PLF2OPS zops, PLPointer zp, PLINT nx, PLINT ny,
PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT_VECTOR clevel, PLINT nlevel, PLFLT fill_width,
PLINT cont_color, PLFLT cont_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
PLFLT shade_min, shade_max, shade_color;
PLINT i, init_color;
PLFLT init_width, color_min, color_max, color_range;
// Color range to use
color_min = plsc->cmap1_min;
color_max = plsc->cmap1_max;
color_range = color_max - color_min;
for ( i = 0; i < nlevel - 1; i++ )
{
shade_min = clevel[i];
shade_max = clevel[i + 1];
shade_color = color_min + i / (PLFLT) ( nlevel - 2 ) * color_range;
// The constants in order mean
// (1) color map1,
// (0, 0, 0, 0) all edge effects will be done with plcont rather
// than the normal plshade drawing which gets partially blocked
// when sequential shading is done as in the present case
plfshade1( zops, zp, nx, ny, defined, xmin, xmax, ymin, ymax,
shade_min, shade_max,
1, shade_color, fill_width,
0, 0, 0, 0,
fill, rectangular, pltr, pltr_data );
}
if ( cont_color > 0 && cont_width > 0 )
{
init_color = plsc->icol0;
init_width = plsc->width;
plcol0( cont_color );
plwidth( cont_width );
if ( pltr )
{
plfcont( zops->f2eval, zp, nx, ny, 1, nx, 1, ny, clevel, nlevel, pltr, pltr_data );
}
else
{
// For this case use the same interpretation that occurs internally
// for plshade. That is set up x and y grids that map from the
// index ranges to xmin, xmax, ymin, ymax, and use those grids
// for the plcont call.
//
PLcGrid cgrid1;
PLFLT *x, *y;
cgrid1.nx = nx;
cgrid1.ny = ny;
x = (PLFLT *) malloc( (size_t) nx * sizeof ( PLFLT ) );
if ( x == NULL )
plexit( "plfshades: Out of memory for x" );
cgrid1.xg = x;
for ( i = 0; i < nx; i++ )
cgrid1.xg[i] = xmin + ( xmax - xmin ) * (float) i / (float) ( nx - 1 );
y = (PLFLT *) malloc( (size_t) ny * sizeof ( PLFLT ) );
if ( y == NULL )
plexit( "plfshades: Out of memory for y" );
cgrid1.yg = y;
for ( i = 0; i < ny; i++ )
cgrid1.yg[i] = ymin + ( ymax - ymin ) * (float) i / (float) ( ny - 1 );
plfcont( zops->f2eval, zp, nx, ny, 1, nx, 1, ny, clevel, nlevel,
pltr1, (void *) &cgrid1 );
free( x );
free( y );
}
plcol0( init_color );
plwidth( init_width );
}
}
// N.B. This routine only needed by the Fortran interface to distinguish
// the case where pltr and pltr_data are NULL. So don't put declaration in
// header which might encourage others to use this in some other context.
PLDLLIMPEXP void
plshade_null( PLFLT_MATRIX a, PLINT nx, PLINT ny, PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular )
{
plshade_int( plf2eval1, (PLPointer) a,
NULL, NULL,
// plc2eval, (PLPointer) &cgrid,
defined, nx, ny, xmin,
xmax, ymin, ymax, shade_min, shade_max,
sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width,
fill, rectangular, NULL, NULL );
}
//--------------------------------------------------------------------------
// plshade()
//
// Shade region.
// This interface to plfshade() assumes the 2d function array is passed
// via a (PLFLT **), and is column-dominant (normal C ordering).
//--------------------------------------------------------------------------
void c_plshade( PLFLT_MATRIX a, PLINT nx, PLINT ny, PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
plshade_int( plf2eval1, (PLPointer) a,
NULL, NULL,
// plc2eval, (PLPointer) &cgrid,
defined, nx, ny, xmin,
xmax, ymin, ymax, shade_min, shade_max,
sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width,
fill, rectangular, pltr, pltr_data );
}
#ifdef PL_DEPRECATED
// plshade1 deprecated as of plplot-5.14.0
//--------------------------------------------------------------------------
// plshade1()
//
// Shade region.
// This interface to plfshade() assumes the 2d function array is passed
// via a (PLFLT *), and is column-dominant (normal C ordering).
//--------------------------------------------------------------------------
void c_plshade1( PLFLT_VECTOR a, PLINT nx, PLINT ny, PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
PLfGrid grid;
grid.f = a;
grid.nx = nx;
grid.ny = ny;
plshade_int( plf2eval, ( PLPointer ) & grid,
NULL, NULL,
// plc2eval, (PLPointer) &cgrid,
defined, nx, ny, xmin,
xmax, ymin, ymax, shade_min, shade_max,
sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width,
fill, rectangular, pltr, pltr_data );
}
#endif //PL_DEPRECATED
//--------------------------------------------------------------------------
// plfshade()
//
// Shade region.
// Array values are determined by the input function and the passed data.
//--------------------------------------------------------------------------
void
plfshade( PLF2EVAL_callback f2eval, PLPointer f2eval_data,
PLF2EVAL_callback c2eval, PLPointer c2eval_data,
PLINT nx, PLINT ny,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
plshade_int( f2eval, f2eval_data, c2eval, c2eval_data,
NULL,
nx, ny, xmin, xmax, ymin, ymax,
shade_min, shade_max, sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width,
fill, rectangular, pltr, pltr_data );
}
//--------------------------------------------------------------------------
// plfshade1()
//
// Shade region.
//
// This function is a plf2ops variant of c_plfshade and c_plfshade1. It
// differs from plfshade in that it supports a "defined" callback (like
// c_plshade and c_plfshade1) rather than a "defined mask" (like plfshade
// even though it is not yet implemented).
//--------------------------------------------------------------------------
void
plfshade1( PLF2OPS zops, PLPointer zp, PLINT nx, PLINT ny,
PLDEFINED_callback defined,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
plshade_int( zops->f2eval, zp,
NULL, NULL,
// plc2eval, (PLPointer) &cgrid,
defined, nx, ny, xmin,
xmax, ymin, ymax, shade_min, shade_max,
sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width,
fill, rectangular, pltr, pltr_data );
}
//--------------------------------------------------------------------------
// plshade_int()
//
// Shade region -- this routine does all the work
//
// This routine is internal so the arguments can and will change.
// To retain some compatibility between versions, you must go through
// some stub routine!
//
// 4/95
//
// parameters:
//
// f2eval, f2eval_data: data to plot
// defined: defined mask (old API - implimented)
// nx, ny: array dimensions
// xmin, xmax, ymin, ymax: grid coordinates
// shade_min, shade_max: shade region with values between ...
// sh_cmap, sh_color, sh_width: shading parameters, width is only for hatching
// min_color, min_width: line parameters for boundary (minimum)
// max_color, max_width: line parameters for boundary (maximum)
// set min_width == 0 and max_width == 0 for no contours
// fill: fill function, set to NULL for no shading (contour plot)
// rectangular: flag set to 1 if pltr() maps rectangles to rectangles
// this helps optimize the plotting
// pltr: function to map from grid to plot coordinates
//
//
//--------------------------------------------------------------------------
static void
plshade_int( PLF2EVAL_callback f2eval, PLPointer f2eval_data,
PLF2EVAL_callback c2eval, PLPointer PL_UNUSED( c2eval_data ), //c2eval is unused.
PLDEFINED_callback defined,
PLINT nx, PLINT ny,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLFILL_callback fill, PLINT rectangular,
PLTRANSFORM_callback pltr, PLPointer pltr_data )
{
PLINT n, slope = 0, ix, iy;
int count, i, j, nxny;
PLFLT *a, *a0, *a1, dx, dy;
PLFLT x[8], y[8], xp[2], tx, ty, init_width;
int *c, *c0, *c1;
(void) c2eval; // Cast to void to silence compiler warning about unused parameter
if ( plsc->level < 3 )
{
plabort( "plfshade: window must be set up first" );
return;
}
if ( nx <= 0 || ny <= 0 )
{
plabort( "plfshade: nx and ny must be positive" );
return;
}
if ( shade_min >= shade_max )
{
plabort( "plfshade: shade_max must exceed shade_min" );
return;
}
if ( pltr == NULL && plsc->coordinate_transform == NULL )
rectangular = 1;
int_val = shade_max - shade_min;
init_width = plsc->width;
pen_col_min = min_color;
pen_col_max = max_color;
pen_wd_min = min_width;
pen_wd_max = max_width;
plstyl( (PLINT) 0, NULL, NULL );
plwidth( sh_width );
if ( fill != NULL )
{
switch ( sh_cmap )
{
case 0:
plcol0( (PLINT) sh_color );
break;
case 1:
plcol1( sh_color );
break;
default:
plabort( "plfshade: invalid color map selection" );
return;
}
}
// alloc space for value array, and initialize
// This is only a temporary kludge
nxny = nx * ny;
if ( ( a = (PLFLT *) malloc( (size_t) nxny * sizeof ( PLFLT ) ) ) == NULL )
{
plabort( "plfshade: unable to allocate memory for value array" );
return;
}
for ( ix = 0; ix < nx; ix++ )
for ( iy = 0; iy < ny; iy++ )
a[iy + ix * ny] = f2eval( ix, iy, f2eval_data );
// alloc space for condition codes
if ( ( c = (int *) malloc( (size_t) nxny * sizeof ( int ) ) ) == NULL )
{
plabort( "plfshade: unable to allocate memory for condition codes" );
free( a );
return;
}
sh_min = shade_min;
sh_max = shade_max;
set_cond( c, a, nxny );
dx = ( xmax - xmin ) / ( nx - 1 );
dy = ( ymax - ymin ) / ( ny - 1 );
a0 = a;
a1 = a + ny;
c0 = c;
c1 = c + ny;
for ( ix = 0; ix < nx - 1; ix++ )
{
for ( iy = 0; iy < ny - 1; iy++ )
{
count = c0[iy] + c0[iy + 1] + c1[iy] + c1[iy + 1];
// No filling needs to be done for these cases
if ( count >= UNDEF )
continue;
if ( count == 4 * POS )
continue;
if ( count == 4 * NEG )
continue;
// Entire rectangle can be filled
if ( count == 4 * OK )
{
// find biggest rectangle that fits
if ( rectangular )
{
big_recl( c0 + iy, ny, nx - ix, ny - iy, &i, &j );
}
else
{
i = j = 1;
}
x[0] = x[1] = ix;
x[2] = x[3] = ix + i;
y[0] = y[3] = iy;
y[1] = y[2] = iy + j;
if ( pltr )
{
for ( i = 0; i < 4; i++ )
{
( *pltr )( x[i], y[i], &tx, &ty, pltr_data );
x[i] = tx;
y[i] = ty;
}
}
else
{
for ( i = 0; i < 4; i++ )
{
x[i] = xmin + x[i] * dx;
y[i] = ymin + y[i] * dy;
}
}
if ( fill != NULL )
exfill( fill, defined, (PLINT) 4, x, y );
iy += j - 1;
continue;
}
// Only part of rectangle can be filled
n_point = min_points = max_points = 0;
n = find_interval( a0[iy], a0[iy + 1], c0[iy], c0[iy + 1], xp );
for ( j = 0; j < n; j++ )
{
x[j] = ix;
y[j] = iy + xp[j];
}
i = find_interval( a0[iy + 1], a1[iy + 1],
c0[iy + 1], c1[iy + 1], xp );
for ( j = 0; j < i; j++ )
{
x[j + n] = ix + xp[j];
y[j + n] = iy + 1;
}
n += i;
i = find_interval( a1[iy + 1], a1[iy], c1[iy + 1], c1[iy], xp );
for ( j = 0; j < i; j++ )
{
x[n + j] = ix + 1;
y[n + j] = iy + 1 - xp[j];
}
n += i;
i = find_interval( a1[iy], a0[iy], c1[iy], c0[iy], xp );
for ( j = 0; j < i; j++ )
{
x[n + j] = ix + 1 - xp[j];
y[n + j] = iy;
}
n += i;
if ( pltr )
{
for ( i = 0; i < n; i++ )
{
( *pltr )( x[i], y[i], &tx, &ty, pltr_data );
x[i] = tx;
y[i] = ty;
}
}
else
{
for ( i = 0; i < n; i++ )
{
x[i] = xmin + x[i] * dx;
y[i] = ymin + y[i] * dy;
}
}
if ( min_points == 4 )
slope = plctestez( a, nx, ny, ix, iy, shade_min );
if ( max_points == 4 )
slope = plctestez( a, nx, ny, ix, iy, shade_max );
// n = number of end of line segments
// min_points = number times shade_min meets edge
// max_points = number times shade_max meets edge
// special cases: check number of times a contour is in a box
switch ( ( min_points << 3 ) + max_points )
{
case 000:
case 020:
case 002:
case 022:
if ( fill != NULL && n > 0 )
exfill( fill, defined, n, x, y );
break;
case 040: // 2 contour lines in box
case 004:
if ( n != 6 )
fprintf( stderr, "plfshade err n=%d !6", (int) n );
if ( slope == 1 && c0[iy] == OK )
{
if ( fill != NULL )
exfill( fill, defined, n, x, y );
}
else if ( slope == 1 )
{
selected_polygon( fill, defined, x, y, 0, 1, 2, -1 );
selected_polygon( fill, defined, x, y, 3, 4, 5, -1 );
}
else if ( c0[iy + 1] == OK )
{
if ( fill != NULL )
exfill( fill, defined, n, x, y );
}
else
{
selected_polygon( fill, defined, x, y, 0, 1, 5, -1 );
selected_polygon( fill, defined, x, y, 2, 3, 4, -1 );
}
break;
case 044:
if ( n != 8 )
fprintf( stderr, "plfshade err n=%d !8", (int) n );
if ( slope == 1 )
{
selected_polygon( fill, defined, x, y, 0, 1, 2, 3 );
selected_polygon( fill, defined, x, y, 4, 5, 6, 7 );
}
else
{
selected_polygon( fill, defined, x, y, 0, 1, 6, 7 );
selected_polygon( fill, defined, x, y, 2, 3, 4, 5 );
}
break;
case 024:
case 042:
// 3 contours
if ( n != 7 )
fprintf( stderr, "plfshade err n=%d !7", (int) n );
if ( ( c0[iy] == OK || c1[iy + 1] == OK ) && slope == 1 )
{
if ( fill != NULL )
exfill( fill, defined, n, x, y );
}
else if ( ( c0[iy + 1] == OK || c1[iy] == OK ) && slope == 0 )
{
if ( fill != NULL )
exfill( fill, defined, n, x, y );
}
else if ( c0[iy] == OK )
{
selected_polygon( fill, defined, x, y, 0, 1, 6, -1 );
selected_polygon( fill, defined, x, y, 2, 3, 4, 5 );
}
else if ( c0[iy + 1] == OK )
{
selected_polygon( fill, defined, x, y, 0, 1, 2, -1 );
selected_polygon( fill, defined, x, y, 3, 4, 5, 6 );
}
else if ( c1[iy + 1] == OK )
{
selected_polygon( fill, defined, x, y, 0, 1, 5, 6 );
selected_polygon( fill, defined, x, y, 2, 3, 4, -1 );
}
else if ( c1[iy] == OK )
{
selected_polygon( fill, defined, x, y, 0, 1, 2, 3 );
selected_polygon( fill, defined, x, y, 4, 5, 6, -1 );
}
else
{
fprintf( stderr, "plfshade err logic case 024:042\n" );
}
break;
default:
fprintf( stderr, "prog err switch\n" );
break;
}
draw_boundary( slope, x, y );
if ( fill != NULL )
{
plwidth( sh_width );
if ( sh_cmap == 0 )
plcol0( (PLINT) sh_color );
else if ( sh_cmap == 1 )
plcol1( sh_color );
}
}
a0 = a1;
c0 = c1;
a1 += ny;
c1 += ny;
}
free( c );
free( a );
plwidth( init_width );
}
//--------------------------------------------------------------------------
// set_cond()
//
// Fills out condition code array.
//--------------------------------------------------------------------------
static void
set_cond( register int *cond, register PLFLT *a, register PLINT n )
{
while ( n-- )
{
if ( *a < sh_min )
*cond++ = NEG;
else if ( *a > sh_max )
*cond++ = POS;
else if ( isnan( *a ) ) //check for nans and set cond to undefined
*cond++ = UNDEF;
else
*cond++ = OK;
a++;
}
}
//--------------------------------------------------------------------------
// find_interval()
//
// Two points x(0) = a0, (condition code c0) x(1) = a1, (condition code c1)
// return interval on the line that are shaded
//
// returns 0 : no points to be shaded 1 : x[0] <= x < 1 is the interval 2 :
// x[0] <= x <= x[1] < 1 interval to be shaded n_point, max_points,
// min_points are incremented location of min/max_points are stored
//--------------------------------------------------------------------------
static int
find_interval( PLFLT a0, PLFLT a1, PLINT c0, PLINT c1, PLFLT *x )
{
register int n;
n = 0;
if ( c0 == OK )
{
x[n++] = 0.0;
n_point++;
}
if ( c0 == c1 )
return n;
if ( c0 == NEG || c1 == POS )
{
if ( c0 == NEG )
{
x[n++] = linear( a0, a1, sh_min );
min_pts[min_points++] = n_point++;
}
if ( c1 == POS )
{
x[n++] = linear( a0, a1, sh_max );
max_pts[max_points++] = n_point++;
}
}
if ( c0 == POS || c1 == NEG )
{
if ( c0 == POS )
{
x[n++] = linear( a0, a1, sh_max );
max_pts[max_points++] = n_point++;
}
if ( c1 == NEG )
{
x[n++] = linear( a0, a1, sh_min );
min_pts[min_points++] = n_point++;
}
}
return n;
}
//--------------------------------------------------------------------------
// selected_polygon()
//
// Draws a polygon from points in x[] and y[].
// Point selected by v1..v4
//--------------------------------------------------------------------------
static void
selected_polygon( PLFILL_callback fill, PLDEFINED_callback defined,
PLFLT_VECTOR x, PLFLT_VECTOR y, PLINT v1, PLINT v2, PLINT v3, PLINT v4 )
{
register PLINT n = 0;
PLFLT xx[4], yy[4];
if ( fill == NULL )
return;
if ( v1 >= 0 )
{
xx[n] = x[v1];
yy[n++] = y[v1];
}
if ( v2 >= 0 )
{
xx[n] = x[v2];
yy[n++] = y[v2];
}
if ( v3 >= 0 )
{
xx[n] = x[v3];
yy[n++] = y[v3];
}
if ( v4 >= 0 )
{
xx[n] = x[v4];
yy[n++] = y[v4];
}
exfill( fill, defined, n, (PLFLT *) xx, (PLFLT *) yy );
}
//--------------------------------------------------------------------------
// bisect()
//
// Find boundary recursively by bisection.
// (x1, y1) is in the defined region, while (x2, y2) in the undefined one.
// The result is returned in
//--------------------------------------------------------------------------
static void
bisect( PLDEFINED_callback defined, PLINT niter,
PLFLT x1, PLFLT y1, PLFLT x2, PLFLT y2, PLFLT* xb, PLFLT* yb )
{
PLFLT xm;
PLFLT ym;
if ( niter == 0 )
{
*xb = x1;
*yb = y1;
return;
}
xm = ( x1 + x2 ) / 2.;
ym = ( y1 + y2 ) / 2.;
if ( defined( xm, ym ) )
bisect( defined, niter - 1, xm, ym, x2, y2, xb, yb );
else
bisect( defined, niter - 1, x1, y1, xm, ym, xb, yb );
}
//--------------------------------------------------------------------------
// exfill()
//
// Fills a polygon from points in x[] and y[] with all points in
// undefined regions dropped and replaced by points at the bisected
// edge of the defined region.
// Note, undefined regions that are confined to the areas between polygon
// points are completely ignored. Also, a range of undefined polygon points
// are simply replaced with a straight line with accurately bisected end
// points. So this routine can produce problematic plotted results
// if the polygon is not a lot smaller than the typical resolution of
// the defined region.
//--------------------------------------------------------------------------
static void
exfill( PLFILL_callback fill, PLDEFINED_callback defined,
int n, PLFLT_VECTOR x, PLFLT_VECTOR y )
{
if ( n < 3 )
{
plabort( "exfill: Not enough points in object" );
return;
}
if ( defined == NULL )
( *fill )( n, x, y );
else
{
PLFLT *xx;
PLFLT *yy;
PLFLT xb, yb;
PLINT count = 0;
PLINT im1 = n - 1;
PLINT is_defined = defined( x[im1], y[im1] );
PLINT i;
// Slightly less than 2 n points are required for xx, yy, but
// allocate room for 2 n to be safe.
if ( ( xx = (PLFLT *) malloc( 2 * (size_t) n * sizeof ( PLFLT ) ) ) == NULL )
plexit( "exfill: out of memory for xx" );
if ( ( yy = (PLFLT *) malloc( 2 * (size_t) n * sizeof ( PLFLT ) ) ) == NULL )
plexit( "exfill: out of memory for yy." );
for ( i = 0; i < n; i++ )
{
// is_defined tells whether im1 point was in defined region.
if ( defined( x[i], y[i] ) )
{
if ( !is_defined )
{
// Cross from undefined (at im1) to defined region.
// Bisect for the first point inside the defined region
// and add it to xx, yy.
bisect( defined, NUMBER_BISECTIONS,
x[i], y[i], x[im1], y[im1], &xb, &yb );
xx[count] = xb;
yy[count++] = yb;
}
// x[i], y[i] known to be in defined region so add this
// point to xx, yy.
xx[count] = x[i];
yy[count++] = y[i];
is_defined = 1;
}
else
{
if ( is_defined )
{
// Cross from defined (at im1) to undefined region.
// Bisect for the last point in the defined region and
// add it to xx, yy.
bisect( defined, NUMBER_BISECTIONS,
x[im1], y[im1], x[i], y[i], &xb, &yb );
xx[count] = xb;
yy[count++] = yb;
is_defined = 0;
}
}
im1 = i;
}
if ( count >= 3 )
( *fill )( count, (PLFLT_VECTOR) xx, (PLFLT_VECTOR) yy );
free( xx );
free( yy );
}
}
//--------------------------------------------------------------------------
// big_recl()
//
// find a big rectangle for shading
//
// 2 goals: minimize calls to (*fill)()
// keep ratio 1:3 for biggest rectangle
//
// only called by plshade()
//
// assumed that a 1 x 1 square already fits
//
// c[] = condition codes
// ny = c[1][0] == c[ny] (you know what I mean)
//
// returns ix, iy = length of rectangle in grid units
//
// ix < dx - 1
// iy < dy - 1
//
// If iy == 1 -> ix = 1 (so that cond code can be set to skip)
//--------------------------------------------------------------------------
#define RATIO 3
#define COND( x, y ) cond_code[x * ny + y]
static void
big_recl( int *cond_code, register int ny, int dx, int dy,
int *ix, int *iy )
{
int ok_x, ok_y, j;
register int i, x, y;
register int *cond;
// ok_x = ok to expand in x direction
// x = current number of points in x direction
ok_x = ok_y = 1;
x = y = 2;
while ( ok_x || ok_y )
{
#ifdef RATIO
if ( RATIO * x <= y || RATIO * y <= x )
break;
#endif
if ( ok_y )
{
// expand in vertical
ok_y = 0;
if ( y == dy )
continue;
cond = &COND( 0, y );
for ( i = 0; i < x; i++ )
{
if ( *cond != OK )
break;
cond += ny;
}
if ( i == x )
{
// row is ok
y++;
ok_y = 1;
}
}
if ( ok_x )
{
if ( y == 2 )
break;
// expand in x direction
ok_x = 0;
if ( x == dx )
continue;
cond = &COND( x, 0 );
for ( i = 0; i < y; i++ )
{
if ( *cond++ != OK )
break;
}
if ( i == y )
{
// column is OK
x++;
ok_x = 1;
}
}
}
// found the largest rectangle of 'ix' by 'iy'
*ix = --x;
*iy = --y;
// set condition code to UNDEF in interior of rectangle
for ( i = 1; i < x; i++ )
{
cond = &COND( i, 1 );
for ( j = 1; j < y; j++ )
{
*cond++ = UNDEF;
}
}
}
//--------------------------------------------------------------------------
// draw_boundary()
//
// Draw boundaries of contour regions based on min_pts[], and max_pts[].
//--------------------------------------------------------------------------
static void
draw_boundary( PLINT slope, PLFLT *x, PLFLT *y )
{
int i;
if ( pen_col_min != 0 && pen_wd_min != 0 && min_points != 0 )
{
plcol0( pen_col_min );
plwidth( pen_wd_min );
if ( min_points == 4 && slope == 0 )
{
// swap points 1 and 3
i = min_pts[1];
min_pts[1] = min_pts[3];
min_pts[3] = i;
}
pljoin( x[min_pts[0]], y[min_pts[0]], x[min_pts[1]], y[min_pts[1]] );
if ( min_points == 4 )
{
pljoin( x[min_pts[2]], y[min_pts[2]], x[min_pts[3]],
y[min_pts[3]] );
}
}
if ( pen_col_max != 0 && pen_wd_max != 0 && max_points != 0 )
{
plcol0( pen_col_max );
plwidth( pen_wd_max );
if ( max_points == 4 && slope == 0 )
{
// swap points 1 and 3
i = max_pts[1];
max_pts[1] = max_pts[3];
max_pts[3] = i;
}
pljoin( x[max_pts[0]], y[max_pts[0]], x[max_pts[1]], y[max_pts[1]] );
if ( max_points == 4 )
{
pljoin( x[max_pts[2]], y[max_pts[2]], x[max_pts[3]],
y[max_pts[3]] );
}
}
}
//--------------------------------------------------------------------------
//
// plctest( &(x[0][0]), PLFLT level)
// where x was defined as PLFLT x[4][4];
//
// determines if the contours associated with level have
// positive slope or negative slope in the box:
//
// (2,3) (3,3)
//
// (2,2) (3,2)
//
// this is heuristic and can be changed by the user
//
// return 1 if positive slope
// 0 if negative slope
//
// algorithmn:
// 1st test:
// find length of contours assuming positive and negative slopes
// if the length of the negative slope contours is much bigger
// than the positive slope, then the slope is positive.
// (and vice versa)
// (this test tries to minimize the length of contours)
//
// 2nd test:
// if abs((top-right corner) - (bottom left corner)) >
// abs((top-left corner) - (bottom right corner)) ) then
// return negatiave slope.
// (this test tries to keep the slope for different contour levels
// the same)
//--------------------------------------------------------------------------
#define X( a, b ) ( x[a * 4 + b] )
#define POSITIVE_SLOPE (PLINT) 1
#define NEGATIVE_SLOPE (PLINT) 0
#define RATIO_SQ 6.0
static PLINT
plctest( PLFLT *x, PLFLT PL_UNUSED( level ) )
{
int i, j;
double t[4], sorted[4], temp;
sorted[0] = t[0] = X( 1, 1 );
sorted[1] = t[1] = X( 2, 2 );
sorted[2] = t[2] = X( 1, 2 );
sorted[3] = t[3] = X( 2, 1 );
for ( j = 1; j < 4; j++ )
{
temp = sorted[j];
i = j - 1;
while ( i >= 0 && sorted[i] > temp )
{
sorted[i + 1] = sorted[i];
i--;
}
sorted[i + 1] = temp;
}
// sorted[0] == min
// find min contour
temp = int_val * ceil( sorted[0] / int_val );
if ( temp < sorted[1] )
{
// one contour line
for ( i = 0; i < 4; i++ )
{
if ( t[i] < temp )
return i / 2;
}
}
// find max contour
temp = int_val * floor( sorted[3] / int_val );
if ( temp > sorted[2] )
{
// one contour line
for ( i = 0; i < 4; i++ )
{
if ( t[i] > temp )
return i / 2;
}
}
// nothing better to do - be consistant
return POSITIVE_SLOPE;
}
//--------------------------------------------------------------------------
// plctestez
//
// second routine - easier to use
// fills in x[4][4] and calls plctest
//
// test location a[ix][iy] (lower left corner)
//--------------------------------------------------------------------------
static PLINT
plctestez( PLFLT *a, PLINT nx, PLINT ny, PLINT ix,
PLINT iy, PLFLT level )
{
PLFLT x[4][4];
int i, j, ii, jj;
for ( i = 0; i < 4; i++ )
{
ii = ix + i - 1;
ii = MAX( 0, ii );
ii = MIN( ii, nx - 1 );
for ( j = 0; j < 4; j++ )
{
jj = iy + j - 1;
jj = MAX( 0, jj );
jj = MIN( jj, ny - 1 );
x[i][j] = a[ii * ny + jj];
}
}
return plctest( &( x[0][0] ), level );
}
|