File: x18c.c

package info (click to toggle)
plplot 5.3.1-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 26,248 kB
  • ctags: 11,687
  • sloc: ansic: 86,045; xml: 17,249; sh: 12,400; tcl: 8,113; cpp: 6,824; perl: 4,383; python: 3,915; makefile: 2,899; java: 2,788; fortran: 290; sed: 5; awk: 1
file content (164 lines) | stat: -rw-r--r-- 3,674 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/* $Id: x18c.c,v 1.21 2004/01/20 02:25:58 airwin Exp $

	3-d line and point plot demo.  Adapted from x08c.c.
*/

#include "plcdemos.h"

static int opt[] = { 1, 0, 1, 0 };
static PLFLT alt[] = {20.0, 35.0, 50.0, 65.0};
static PLFLT az[] = {30.0, 40.0, 50.0, 60.0};

void test_poly(int k);

/*--------------------------------------------------------------------------*\
 * main
 *
 * Does a series of 3-d plots for a given data set, with different
 * viewing options in each plot.
\*--------------------------------------------------------------------------*/

#define NPTS 1000

int
main(int argc, char *argv[])
{
    int i, j, k;
    PLFLT *x, *y, *z;
    PLFLT r;
    char title[80];

/* Parse and process command line arguments */

    (void) plParseOpts(&argc, argv, PL_PARSE_FULL);

/* Initialize plplot */

    plinit();

    for( k=0; k < 4; k++ )
	test_poly(k);

    x = (PLFLT *) malloc(NPTS * sizeof(PLFLT));
    y = (PLFLT *) malloc(NPTS * sizeof(PLFLT));
    z = (PLFLT *) malloc(NPTS * sizeof(PLFLT));

/* From the mind of a sick and twisted physicist... */

    for (i = 0; i < NPTS; i++) {
	z[i] = -1. + 2. * i / NPTS;

/* Pick one ... */

/*	r    = 1. - ( (PLFLT) i / (PLFLT) NPTS ); */
	r    = z[i];

	x[i] = r * cos( 2. * PI * 6. * i / NPTS );
	y[i] = r * sin( 2. * PI * 6. * i / NPTS );
    }

    for (k = 0; k < 4; k++) {
	pladv(0);
	plvpor(0.0, 1.0, 0.0, 0.9);
	plwind(-1.0, 1.0, -0.9, 1.1);
	plcol0(1);
	plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k]);
	plbox3("bnstu", "x axis", 0.0, 0,
	       "bnstu", "y axis", 0.0, 0,
	       "bcdmnstuv", "z axis", 0.0, 0);

	plcol0(2);

	if (opt[k])
	    plline3( NPTS, x, y, z );
	else
	    plpoin3( NPTS, x, y, z, 1 );

	plcol0(3);
	sprintf(title, "#frPLplot Example 18 - Alt=%.0f, Az=%.0f",
		alt[k], az[k]);
	plmtex("t", 1.0, 0.5, 0.5, title);
    }

    /* Clean up */
    free((void *) x);
    free((void *) y);
    free((void *) z);

    plend();

    exit(0);
}

void test_poly(int k)
{
    PLFLT *x, *y, *z;
    int i, j;
    PLFLT pi, two_pi;
    PLINT draw[][4] = { { 1, 1, 1, 1 },
		      { 1, 0, 1, 0 },
		      { 0, 1, 0, 1 },
		      { 1, 1, 0, 0 } };

    pi = PI, two_pi = 2. * pi;

    x = (PLFLT *) malloc(5 * sizeof(PLFLT));
    y = (PLFLT *) malloc(5 * sizeof(PLFLT));
    z = (PLFLT *) malloc(5 * sizeof(PLFLT));

    pladv(0);
    plvpor(0.0, 1.0, 0.0, 0.9);
    plwind(-1.0, 1.0, -0.9, 1.1);
    plcol0(1);
    plw3d(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k]);
    plbox3("bnstu", "x axis", 0.0, 0,
	   "bnstu", "y axis", 0.0, 0,
	   "bcdmnstuv", "z axis", 0.0, 0);

    plcol0(2);

#define THETA(a) (two_pi * (a) /20.)
#define PHI(a)    (pi * (a) / 20.1)

/*
  x = r sin(phi) cos(theta)
  y = r sin(phi) sin(theta)
  z = r cos(phi)
  r = 1 :=)
  */

    for( i=0; i < 20; i++ ) {
	for( j=0; j < 20; j++ ) {
	    x[0] = sin( PHI(j) ) * cos( THETA(i) );
	    y[0] = sin( PHI(j) ) * sin( THETA(i) );
	    z[0] = cos( PHI(j) );
	    
	    x[1] = sin( PHI(j+1) ) * cos( THETA(i) );
	    y[1] = sin( PHI(j+1) ) * sin( THETA(i) );
	    z[1] = cos( PHI(j+1) );
	    
	    x[2] = sin( PHI(j+1) ) * cos( THETA(i+1) );
	    y[2] = sin( PHI(j+1) ) * sin( THETA(i+1) );
	    z[2] = cos( PHI(j+1) );
	    
	    x[3] = sin( PHI(j) ) * cos( THETA(i+1) );
	    y[3] = sin( PHI(j) ) * sin( THETA(i+1) );
	    z[3] = cos( PHI(j) );
	    
	    x[4] = sin( PHI(j) ) * cos( THETA(i) );
	    y[4] = sin( PHI(j) ) * sin( THETA(i) );
	    z[4] = cos( PHI(j) );

	    plpoly3( 5, x, y, z, draw[k], 1 );
	}
    }

    plcol0(3);
    plmtex("t", 1.0, 0.5, 0.5, "unit radius sphere" );

    /* Clean up */
    free((void *) x);
    free((void *) y);
    free((void *) z);

}