File: x21c.c

package info (click to toggle)
plplot 5.3.1-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 26,248 kB
  • ctags: 11,687
  • sloc: ansic: 86,045; xml: 17,249; sh: 12,400; tcl: 8,113; cpp: 6,824; perl: 4,383; python: 3,915; makefile: 2,899; java: 2,788; fortran: 290; sed: 5; awk: 1
file content (369 lines) | stat: -rw-r--r-- 8,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* $Id: x21c.c,v 1.12 2004/01/20 02:25:59 airwin Exp $
	Grid data demo

   Copyright (C) 2004  Joao Cardoso

   This file is part of PLplot.

   PLplot is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Library Public License as published
   by the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   PLplot is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with PLplot; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "plcdemos.h"
#include <time.h>

#if !defined(HAVE_ISNAN)
#  define isnan(x) ((x) != (x))
#endif

/* Options data structure definition. */

static PLINT pts = 500;
static PLINT xp = 25;
static PLINT yp = 20;
static PLINT nl = 15;
static int knn_order = 20;
static PLFLT threshold = 1.001;
static PLFLT wmin = -1e3;
static int randn = 0;
static int rosen = 0;

static PLOptionTable options[] = {
  {
    "npts",
    NULL,
    NULL,
    &pts,
    PL_OPT_INT,
    "-npts points",
    "Specify number of random points to generate [500]" },
  {
    "randn",
    NULL,
    NULL,
    &randn,
    PL_OPT_BOOL,
    "-randn",
    "Normal instead of uniform sampling -- the effective \n\
\t\t\t  number of points will be smaller than the specified." },
  {
    "rosen",
    NULL,
    NULL,
    &rosen,
    PL_OPT_BOOL,
    "-rosen",
    "Generate points from the Rosenbrock function."},
  {
    "nx",
    NULL,
    NULL,
    &xp,
    PL_OPT_INT,
    "-nx points",
    "Specify grid x dimension [25]" },
  {
    "ny",
    NULL,
    NULL,
    &yp,
    PL_OPT_INT,
    "-ny points",
    "Specify grid y dimension [20]" },
  {
    "nlevel",
    NULL,
    NULL,
    &nl,
    PL_OPT_INT,
    "-nlevel ",
    "Specify number of contour levels [15]" },
  {
    "knn_order",
    NULL,
    NULL,
    &knn_order,
    PL_OPT_INT,
    "-knn_order order",
    "Specify the number of neighbors [20]" },
  {
    "threshold",
    NULL,
    NULL,
    &threshold,
    PL_OPT_FLOAT,
    "-threshold float",
    "Specify what a thin triangle is [1. < [1.001] < 2.]" },

  {
    NULL,			/* option */
    NULL,			/* handler */
    NULL,			/* client data */
    NULL,			/* address of variable to set */
    0,				/* mode flag */
    NULL,			/* short syntax */
    NULL }			/* long syntax */
};

void create_data(PLFLT **xi, PLFLT **yi, PLFLT **zi, int pts);
void free_data(PLFLT *x, PLFLT *y, PLFLT *z);
void create_grid(PLFLT **xi, int px, PLFLT **yi, int py);
void free_grid(PLFLT *x, PLFLT *y);

static void
cmap1_init()
{
  PLFLT i[2], h[2], l[2], s[2];

  i[0] = 0.0;		/* left boundary */
  i[1] = 1.0;		/* right boundary */

  h[0] = 240; /* blue -> green -> yellow -> */
  h[1] = 0;   /* -> red */

  l[0] = 0.6;
  l[1] = 0.6;

  s[0] = 0.8;
  s[1] = 0.8;

  plscmap1n(256);
  c_plscmap1l(0, 2, i, h, l, s, NULL);
}

PLFLT xm, xM, ym, yM;

int
main(int argc, char *argv[])
{
  PLFLT *x, *y, *z, *clev;
  PLFLT *xg, *yg, **zg, **szg;
  PLFLT zmin, zmax, lzm, lzM;
  long ct;
  int i, j, k;
  PLINT alg;
  char ylab[40], xlab[40];
  char *title[] = {"Cubic Spline Approximation",
		   "Delaunay Linear Interpolation",
		   "Natural Neighbors Interpolation",
		   "KNN Inv. Distance Weighted",
		   "3NN Linear Interpolation",
		   "4NN Around Inv. Dist. Weighted"};

  PLFLT opt[] = {0., 0., 0., 0., 0., 0.};

  xm = ym = -0.2;
  xM = yM = 0.8;

  plMergeOpts(options, "x21c options", NULL);
  plParseOpts(&argc, argv, PL_PARSE_FULL);

  opt[2] = wmin;
  opt[3] = (PLFLT) knn_order;
  opt[4] = threshold;

  /* Initialize plplot */

  plinit();

  create_data(&x, &y, &z, pts); /* the sampled data */
  zmin = z[0];
  zmax = z[0];
  for (i=1; i<pts; i++) {
    if (z[i] > zmax)
      zmax = z[i];
    if (z[i] < zmin)
      zmin = z[i];
  }

  create_grid(&xg, xp, &yg, yp); /* grid the data at */
  plAlloc2dGrid(&zg, xp, yp); /* the output grided data */
  clev = (PLFLT *) malloc(nl * sizeof(PLFLT));

  sprintf(xlab, "Npts=%d gridx=%d gridy=%d", pts, xp, yp);
  plcol0(1);
  plenv(xm, xM, ym, yM, 2, 0);
  plcol0(15);
  pllab(xlab, "", "The original data");
  plcol0(2);
  plpoin(pts, x, y, 5);
  pladv(0);

  plssub(3,2);

  for (k=0; k<2; k++) {
    pladv(0);
    for (alg=1; alg<7; alg++) {

      ct = clock();
      plgriddata(x, y, z, pts, xg, xp, yg, yp, zg, alg, opt[alg-1]);
      sprintf(xlab, "time=%d ms", (clock() - ct)/1000);
      sprintf(ylab, "opt=%.3f", opt[alg-1]);

      /* - CSA can generate NaNs (only interpolates?!).
       * - DTLI and NNI can generate NaNs for points outside the convex hull
       *      of the data points.
       * - NNLI can generate NaNs if a sufficiently thick triangle is not found
       *
       * PLplot should be NaN/Inf aware, but changing it now is quite a job...
       * so, instead of not plotting the NaN regions, a weighted average over
       * the neighbors is done.
       */

      if (alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI) {
	int ii, jj;
	PLFLT dist, d;

	for (i=0; i<xp; i++) {
	  for (j=0; j<yp; j++) {
	    if (isnan(zg[i][j])) { /* average (IDW) over the 8 neighbors */

	      zg[i][j] = 0.; dist = 0.;

	      for (ii=i-1; ii<=i+1 && ii<xp; ii++) {
		for (jj=j-1; jj<=j+1 && jj<yp; jj++) {
		  if (ii >= 0 && jj >= 0 && !isnan(zg[ii][jj])) {
		    d = (abs(ii-i) + abs(jj-j)) == 1 ? 1. : 1.4142;
		    zg[i][j] += zg[ii][jj]/(d*d);
		    dist += d;
		  }
		}
	      }
	      if (dist != 0.)
		zg[i][j] /= dist;
	      else
		zg[i][j] = zmin;

	    }
	  }
	}
      }

      plMinMax2dGrid(zg, xp, yp, &lzM, &lzm);

      plcol0(1);
      pladv(alg);

      if (k == 0) {

	lzm = MIN(lzm, zmin);
	lzM = MAX(lzM, zmax);
	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	plenv0(xm, xM, ym, yM, 2, 0);
	plcol0(15);
	pllab(xlab, ylab, title[alg-1]);
	plshades(zg, xp, yp, NULL, xm, xM, ym, yM,
		 clev, nl, 1, 0, 1, plfill, 1, NULL, NULL);
	plcol0(2);
      } else {

	for (i=0; i<nl; i++)
	  clev[i] = lzm + (lzM-lzm)/(nl-1)*i;

	cmap1_init();
	plvpor(0.0, 1.0, 0.0, 0.9);
	plwind(-1.0, 1.0, -1.0, 1.5);
	/*
	 * For the comparition to be fair, all plots should have the
	 * same z values, but to get the max/min of the data generated
	 * by all algorithms would imply two passes. Keep it simple.
	 *
	 * plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
	 */

	plw3d(1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -60);
	plbox3("bnstu", ylab, 0.0, 0,
	       "bnstu", xlab, 0.0, 0,
	       "bcdmnstuv", "", 0.0, 4);
	plcol0(15);
	pllab("", "", title[alg-1]);
	plot3dc(xg, yg, zg, xp, yp, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev, nl);
      }
    }
  }

  plend();

  free_data(x, y, z);
  free_grid(xg, yg);
  free((void *)clev);
  plFree2dGrid(zg, xp, yp);
}


void
create_grid(PLFLT **xi, int px, PLFLT **yi, int py)
{

  PLFLT *x, *y;
  int i;

  x = *xi = (PLFLT *) malloc(px * sizeof(PLFLT));
  y = *yi = (PLFLT *) malloc(py * sizeof(PLFLT));

  for (i=0; i<px; i++)
    *x++ = xm + (xM-xm)*i/(px-1.);

  for (i=0; i<py; i++)
    *y++ = ym + (yM-ym)*i/(py-1.);
}

void
free_grid(PLFLT *xi, PLFLT *yi)
{
  free((void *)xi);
  free((void *)yi);
}

void
create_data(PLFLT **xi, PLFLT **yi, PLFLT **zi, int pts)
{
  int i;
  PLFLT *x, *y, *z, r;
  PLFLT xt, yt;

  *xi = x = (PLFLT *) malloc(pts * sizeof(PLFLT));
  *yi = y = (PLFLT *) malloc(pts * sizeof(PLFLT));
  *zi = z = (PLFLT *) malloc(pts * sizeof(PLFLT));

  for(i=0; i<pts; i++) {
    xt = drand48();
    yt = drand48();
    if (!randn) {
      *x = xt + xm;
      *y = yt + ym;
    } else { /* std=1, meaning that many points are outside the plot range */
      *x = sqrt(-2.*log(xt)) * cos(2.*PI*yt) + xm;
      *y = sqrt(-2.*log(xt)) * sin(2.*PI*yt) + ym;
    }
    if (!rosen) {
      r = sqrt((*x) * (*x) + (*y) * (*y));
      *z = exp(-r * r) * cos(2.0 * PI * r);
    } else {
      *z = log(pow(1. - *x, 2.) + 100. * pow(*y - pow(*x, 2.), 2.));
    }
    x++; y++; z++;
  }
}

void
free_data(PLFLT *x, PLFLT *y, PLFLT *z)
{
  free((void *)x);
  free((void *)y);
  free((void *)z);
}