File: x22c.c

package info (click to toggle)
plplot 5.3.1-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 26,248 kB
  • ctags: 11,687
  • sloc: ansic: 86,045; xml: 17,249; sh: 12,400; tcl: 8,113; cpp: 6,824; perl: 4,383; python: 3,915; makefile: 2,899; java: 2,788; fortran: 290; sed: 5; awk: 1
file content (322 lines) | stat: -rw-r--r-- 7,978 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/* $Id: x22c.c,v 1.8 2004/06/14 21:51:54 rlaboiss Exp $

    Simple vector plot example
    Copyright (C) 2004 Andrew Ross <andrewross@users.sourceforge.net>
    Copyright (C) 2004  Rafael Laboissiere


    This file is part of PLplot.

    PLplot is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Library Public License as published
    by the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    PLplot is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Library General Public License for more details.

    You should have received a copy of the GNU Library General Public License
    along with PLplot; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#include "plcdemos.h"
#include "plevent.h"

/* Pairs of points making the line segments used to plot the user defined arrow */
static PLFLT arrow_x[6] = {-0.5, 0.5, 0.3, 0.5, 0.3, 0.5};
static PLFLT arrow_y[6] = {0.0, 0.0, 0.2, 0.0, -0.2, 0.0};
static PLFLT arrow2_x[6] = {-0.5, 0.3, 0.3, 0.5, 0.3, 0.3};
static PLFLT arrow2_y[6] = {0.0, 0.0,   0.2, 0.0, -0.2, 0.0};

/*--------------------------------------------------------------------------*\
 * main
 *
 * Generates several simple vector plots.  
 \*--------------------------------------------------------------------------*/

/* 
 * Vector plot of the circulation about the origin 
 */
void
circulation() {
    int i,j;
    PLFLT dx, dy, x, y;
    PLcGrid2 cgrid2;
    PLFLT **u, **v;
    const int nx = 20;
    const int ny = 20;
    PLFLT xmin, xmax, ymin, ymax;

    dx = 1.0;
    dy = 1.0;

    xmin = -nx/2*dx;
    xmax = nx/2*dx;
    ymin = -ny/2*dy;
    ymax = ny/2*dy;

    plAlloc2dGrid(&cgrid2.xg,nx,ny);
    plAlloc2dGrid(&cgrid2.yg,nx,ny);
    plAlloc2dGrid(&u,nx,ny);
    plAlloc2dGrid(&v,nx,ny);

    cgrid2.nx = nx;
    cgrid2.ny = ny;

    /* Create data - circulation around the origin. */
    for (i = 0; i<nx; i++) {
	x = (i-nx/2+0.5)*dx;
	for (j = 0; j<ny; j++) {
	    y = (j-ny/2+0.5)*dy;
	    cgrid2.xg[i][j] = x;
	    cgrid2.yg[i][j] = y;
	    u[i][j] = y;
	    v[i][j] = -x;
	}
    }

    /* Plot vectors with default arrows */
    plenv(xmin, xmax, ymin, ymax, 0, 0);
    pllab("(x)", "(y)", "#frPLplot Example 22 - circulation");
    plcol0(2);
    plvect(u,v,nx,ny,0.0,pltr2,(void *)&cgrid2);
    plcol0(1);

    plFree2dGrid(cgrid2.xg,nx,ny);
    plFree2dGrid(cgrid2.yg,nx,ny);
    plFree2dGrid(u,nx,ny);
    plFree2dGrid(v,nx,ny);


}

/* 
 * Vector plot of flow through a constricted pipe 
 */
void
constriction() {
    int i,j;
    PLFLT dx, dy, x, y;
    PLFLT xmin, xmax, ymin, ymax;
    PLFLT Q, b, dbdx;
    PLcGrid2 cgrid2;
    PLFLT **u, **v;
    const int nx = 20;
    const int ny = 20;

    dx = 1.0;
    dy = 1.0;

    xmin = -nx/2*dx;
    xmax = nx/2*dx;
    ymin = -ny/2*dy;
    ymax = ny/2*dy;

    plAlloc2dGrid(&cgrid2.xg,nx,ny);
    plAlloc2dGrid(&cgrid2.yg,nx,ny);
    plAlloc2dGrid(&u,nx,ny);
    plAlloc2dGrid(&v,nx,ny);

    cgrid2.nx = nx;
    cgrid2.ny = ny;

    Q = 2.0;
    for (i = 0; i<nx; i++) {
	x = (i-nx/2+0.5)*dx;
	for (j = 0; j<ny; j++) {
	    y = (j-ny/2+0.5)*dy;
	    cgrid2.xg[i][j] = x;
	    cgrid2.yg[i][j] = y;
	    b = ymax/4.0*(3-cos(M_PI*x/xmax));
	    if (fabs(y) < b) {
		dbdx = ymax/4.0*sin(M_PI*x/xmax)*
		    y/b;
		u[i][j] = Q*ymax/b;
		v[i][j] = dbdx*u[i][j];
	    }
	    else {
		u[i][j] = 0.0;
		v[i][j] = 0.0;
	    }
	}
    }

    plenv(xmin, xmax, ymin, ymax, 0, 0);
    pllab("(x)", "(y)", "#frPLplot Example 22 - constriction");
    plcol0(2);
    plvect(u,v,nx,ny,-0.5,pltr2,(void *)&cgrid2);
    plcol0(1);

    plFree2dGrid(cgrid2.xg,nx,ny);
    plFree2dGrid(cgrid2.yg,nx,ny);
    plFree2dGrid(u,nx,ny);
    plFree2dGrid(v,nx,ny);


}



f2mnmx(PLFLT **f, PLINT nx, PLINT ny, PLFLT *fmin, PLFLT *fmax)
{
    int i, j;

    *fmax = f[0][0];
    *fmin = *fmax;

    for (i = 0; i < nx; i++) {
	for (j = 0; j < ny; j++) {
	    *fmax = MAX(*fmax, f[i][j]);
	    *fmin = MIN(*fmin, f[i][j]);
	}
    }
}

/* 
 * Vector plot of the gradient of a shielded potential (see example 9) 
 */
void potential() {
    const int nper = 100;
    const int nlevel = 10;
    const int nr = 20;
    const int ntheta = 20;
  
    int i,j;
    PLFLT eps, q1, d1, q1i, d1i, q2, d2, q2i, d2i;
    PLFLT div1, div1i, div2, div2i;
    PLFLT **u, **v, **z, r, theta, x, y, dz;
    PLFLT xmin, xmax, ymin, ymax, rmax, zmax, zmin;
    PLFLT px[nper], py[nper], clevel[nlevel];
    PLcGrid2 cgrid2;

  
    /* Create data to be plotted */
    plAlloc2dGrid(&cgrid2.xg,nr,ntheta);
    plAlloc2dGrid(&cgrid2.yg,nr,ntheta);
    plAlloc2dGrid(&u,nr,ntheta);
    plAlloc2dGrid(&v,nr,ntheta);
    plAlloc2dGrid(&z,nr,ntheta);

    cgrid2.nx = nr;
    cgrid2.ny = ntheta;

    /* Potential inside a conducting cylinder (or sphere) by method of images.
     * Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
     * Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
     * Also put in smoothing term at small distances.
     */

    rmax = (double) nr;

    eps = 2.;

    q1 = 1.;
    d1 = rmax/4.;

    q1i = - q1*rmax/d1;
    d1i = pow(rmax, 2.)/d1;

    q2 = -1.;
    d2 = rmax/4.;

    q2i = - q2*rmax/d2;
    d2i = pow(rmax, 2.)/d2;

    for (i = 0; i < nr; i++) {
	r = 0.5 + (double) i;
	for (j = 0; j < ntheta; j++) {
	    theta = 2.*PI/(ntheta-1)*(0.5+(double)j);
	    x = r*cos(theta);
	    y = r*sin(theta);
	    cgrid2.xg[i][j] = x;
	    cgrid2.yg[i][j] = y;
	    div1 = sqrt(pow(x-d1, 2.) + pow(y-d1, 2.) + pow(eps, 2.));
	    div1i = sqrt(pow(x-d1i, 2.) + pow(y-d1i, 2.) + pow(eps, 2.));
	    div2 = sqrt(pow(x-d2, 2.) + pow(y+d2, 2.) + pow(eps, 2.));
	    div2i = sqrt(pow(x-d2i, 2.) + pow(y+d2i, 2.) + pow(eps, 2.));
	    z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i;
	    u[i][j] = -q1*(x-d1)/pow(div1,3.) - q1i*(x-d1i)/pow(div1i,3.0) 
		- q2*(x-d2)/pow(div2,3.) - q2i*(x-d2i)/pow(div2i,3.);
	    v[i][j] = -q1*(y-d1)/pow(div1,3.) - q1i*(y-d1i)/pow(div1i,3.0) 
		- q2*(y+d2)/pow(div2,3.) - q2i*(y+d2i)/pow(div2i,3.);
	}
    }

    f2mnmx(cgrid2.xg, nr, ntheta, &xmin, &xmax);
    f2mnmx(cgrid2.yg, nr, ntheta, &ymin, &ymax);
    f2mnmx(z, nr, ntheta, &zmin, &zmax);

    plenv(xmin, xmax, ymin, ymax, 0, 0);
    pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot");
    /* Plot contours of the potential */
    dz = (zmax-zmin)/(double) nlevel;
    for (i = 0; i < nlevel; i++) {
	clevel[i] = zmin + ((double) i + 0.5)*dz;
    }
    plcol0(3);
    pllsty(2);
    plcont(z,nr,ntheta,1,nr,1,ntheta,clevel,nlevel,pltr2,(void *) &cgrid2);
    pllsty(1);
    plcol0(1);
    
    /* Plot the vectors of the gradient of the potential */
    plcol0(2);
    plvect(u,v,nr,ntheta,25.0,pltr2,(void *)&cgrid2);
    plcol0(1);

    /* Plot the perimeter of the cylinder */
    for (i=0;i<nper;i++) {
	theta = (2.*PI/(nper-1))*(double)i;
	px[i] = rmax*cos(theta);
	py[i] = rmax*sin(theta);
    }
    plline(nper,px,py);
    
    plFree2dGrid(z,nr,ntheta);
    plFree2dGrid(cgrid2.xg,nr,ntheta);
    plFree2dGrid(cgrid2.yg,nr,ntheta);
    plFree2dGrid(u,nr,ntheta);
    plFree2dGrid(v,nr,ntheta);


}

int
main(int argc, char *argv[])
{
    int i, j;
    PLINT narr, fill;

    /* Parse and process command line arguments */

    plParseOpts(&argc, argv, PL_PARSE_FULL);

    /* Initialize plplot */

    plinit();

    circulation();

    narr = 6;
    fill = 0;

    /* Set arrow style using arrow_x and arrow_y then 
       plot using these arrows.*/
    plsvect(arrow_x, arrow_y, narr, fill);
    constriction();

    /* Set arrow style using arrow2_x and arrow2_y then 
       plot using these filled arrows. */
    fill = 1;
    plsvect(arrow2_x, arrow2_y, narr, fill);
    constriction();

    potential();

    plend();
    exit(0);
}