1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
from Numeric import *
from plplot import *
XPTS = 35
YPTS = 46
XSPA = 2./(XPTS-1)
YSPA = 2./(YPTS-1)
#polar plot data
PERIMETERPTS = 100
RPTS = 40
THETAPTS = 40
#potential plot data
PPERIMETERPTS = 100
PRPTS = 40
PTHETAPTS = 64
tr = array((XSPA, 0.0, -1.0, 0.0, YSPA, -1.0))
def mypltr(x, y, data):
result0 = data[0] * x + data[1] * y + data[2]
result1 = data[3] * x + data[4] * y + data[5]
return array((result0, result1))
def polar():
#polar contour plot example.
plenv(-1., 1., -1., 1., 0, -2,)
plcol0(1)
# Perimeter
t = (2.*pi/(PERIMETERPTS-1))*arange(PERIMETERPTS)
px = cos(t)
py = sin(t)
plline(px, py)
# create data to be contoured.
r = arange(RPTS)/float(RPTS-1)
r.shape = (-1,1)
theta = (2.*pi/float(THETAPTS-1))*arange(THETAPTS-1)
xg = r*cos(theta)
yg = r*sin(theta)
zg = r*ones(THETAPTS-1)
lev = 0.05 + 0.10*arange(10)
plcol0(2)
plcont(zg, lev, pltr2, xg, yg, 2)
# ^-- :-). Means: "2nd coord is wrapped."
plcol0(1)
pllab("", "", "Polar Contour Plot")
def potential():
#shielded potential contour plot example.
# create data to be contoured.
r = 0.5 + arange(PRPTS)
r.shape = (-1,1)
theta = (2.*pi/float(PTHETAPTS-1))*(0.5+arange(PTHETAPTS-1))
xg = r*cos(theta)
yg = r*sin(theta)
rmax = max(r.flat)
xmin = min(xg.flat)
xmax = max(xg.flat)
ymin = min(yg.flat)
ymax = max(yg.flat)
x0 = (xmin + xmax)/2.
y0 = (ymin + ymax)/2.
#perturbed (expanded) limits
peps = 0.05
xpmin = xmin - abs(xmin)*peps
xpmax = xmax + abs(xmax)*peps
ypmin = ymin - abs(ymin)*peps
ypmax = ymax + abs(ymax)*peps
# Potential inside a conducting cylinder (or sphere) by method of images.
# Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
# Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
# Also put in smoothing term at small distances.
eps = 2.
q1 = 1.
d1 = rmax/4.
q1i = - q1*rmax/d1
d1i = rmax**2/d1
q2 = -1.
d2 = rmax/4.
q2i = - q2*rmax/d2
d2i = rmax**2/d2
div1 = sqrt((xg-d1)**2 + (yg-d1)**2 + eps**2)
div1i = sqrt((xg-d1i)**2 + (yg-d1i)**2 + eps**2)
div2 = sqrt((xg-d2)**2 + (yg+d2)**2 + eps**2)
div2i = sqrt((xg-d2i)**2 + (yg+d2i)**2 + eps**2)
zg = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
zmin = min(zg.flat)
zmax = max(zg.flat)
# print "%.15g %.15g %.15g %.15g %.15g %.15g %.15g %.15g \n" % \
# (q1, d1, q1i, d1i, q2, d2, q2i, d2i)
# print "%.15g %.15g %.15g %.15g %.15g %.15g \n" % \
# (xmin, xmax, ymin, ymax, zmin, zmax)
# Positive and negative contour levels.
nlevel = 20
dz = (zmax-zmin)/float(nlevel)
clevel = zmin + (arange(20)+0.5)*dz
try:
#This works with numpy 20.3
clevelpos = compress(clevel > 0., clevel)
clevelneg = compress(clevel <= 0., clevel)
except:
#Eventually eliminate this as we quit supporting old numpy versions.
print "Calculate negative and positive contours the old-fashioned way"
clevelpos = zeros(20,"double")
clevelneg = zeros(20,"double")
nclevelpos = 0
nclevelneg = 0
for i in range(20):
if clevel[i] > 0.:
clevelpos[nclevelpos] = clevel[i]
nclevelpos = nclevelpos+1
else:
clevelneg[nclevelneg] = clevel[i]
nclevelneg = nclevelneg+1
clevelpos = clevelpos[0:nclevelpos]
clevelneg = clevelneg[0:nclevelneg]
#Colours!
ncollin = 11
ncolbox = 1
ncollab = 2
#Finally start plotting this page!
pladv(0)
plcol0(ncolbox)
plvpas(0.1, 0.9, 0.1, 0.9, 1.0)
plwind(xpmin, xpmax, ypmin, ypmax)
plbox("", 0., 0, "", 0., 0)
plcol0(ncollin)
# Negative contours
pllsty(2)
plcont(zg, clevelneg, pltr2, xg, yg, 2)
# Positive contours
pllsty(1)
plcont(zg, clevelpos, pltr2, xg, yg, 2)
# Draw outer boundary
t = (2.*pi/(PPERIMETERPTS-1))*arange(PPERIMETERPTS)
px = x0 + rmax*cos(t)
py = y0 + rmax*sin(t)
plcol0(ncolbox)
plline(px, py)
plcol0(ncollab)
pllab("", "", "Shielded potential of charges in a conducting sphere")
def main():
mark = 1500
space = 1500
clevel = -1. + 0.2*arange(11)
xx = (arrayrange(XPTS) - XPTS/2) / float((XPTS/2))
yy = (arrayrange(YPTS) - YPTS/2) / float((YPTS/2)) - 1.
xx.shape = (-1,1)
z = (xx*xx)-(yy*yy)
# 2.*outerproduct(xx,yy) for new versions of Numeric which have outerproduct.
w = 2.*xx*yy
# Set up grids.
# Note *for the given* tr, mypltr(i,j,tr)[0] is only a function of i
# and mypltr(i,j,tr)[1] is only function of j.
xg0 = mypltr(arange(XPTS),0,tr)[0]
yg0 = mypltr(0,arange(YPTS),tr)[1]
distort = 0.4
cos_x = cos((pi/2.)*xg0)
cos_y = cos((pi/2.)*yg0)
xg1 = xg0 + distort*cos_x
yg1 = yg0 - distort*cos_y
# Need independent copy here so the shape changes for xg0t do not affect
# xg0.
try:
xg0t = xg0.copy()
except:
# old versions of Numpy bundled with python-1.5 do not have the
# copy method for arrays. So if the above fails, do it another way
# (which we will remove as soon as we quit supporting python-1.5)
xg0t = array(xg0)
cos_x.shape = (-1,1)
xg0t.shape = (-1,1)
xg2 = xg0t + distort*cos_x*cos_y
yg2 = yg0 - distort*cos_x*cos_y
# Plot using mypltr (scaled identity) transformation used to create
# xg0 and yg0
# pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
# plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
# plcol0(2)
# plcont(z, clevel, mypltr, tr)
# plstyl([mark], [space])
# plcol0(3)
# plcont(w, clevel, mypltr, tr)
# plstyl([], [])
# plcol0(1)
# pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
pl_setcontlabelparam(0.006, 0.3, 0.1, 1)
plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
plcol0(2)
plcont(z, clevel, mypltr, tr)
plstyl([mark], [space])
plcol0(3)
plcont(w, clevel, mypltr, tr)
plstyl([], [])
plcol0(1)
pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
# Plot using 1D coordinate transformation.
pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
plcol0(2)
plcont(z, clevel, pltr1, xg1, yg1)
plstyl([mark], [space])
plcol0(3)
plcont(w, clevel, pltr1, xg1, yg1)
plstyl([], [])
plcol0(1)
pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
# pl_setcontlabelparam(0.006, 0.3, 0.1, 1)
# plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
# plcol0(2)
# plcont(z, clevel, pltr1, xg1, yg1)
# plstyl([mark], [space])
# plcol0(3)
# plcont(w, clevel, pltr1, xg1, yg1)
# plstyl([], [])
# plcol0(1)
# pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
# pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
#
# Plot using 2D coordinate transformation.
plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
plcol0(2)
plcont(z, clevel, pltr2, xg2, yg2)
plstyl([mark], [space])
plcol0(3)
plcont(w, clevel, pltr2, xg2, yg2)
plstyl([], [])
plcol0(1)
pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
# pl_setcontlabelparam(0.006, 0.3, 0.1, 1)
# plenv(-1.0, 1.0, -1.0, 1.0, 0, 0)
# plcol0(2)
# plcont(z, clevel, pltr2, xg2, yg2)
# plstyl([mark], [space])
# plcol0(3)
# plcont(w, clevel, pltr2, xg2, yg2)
# plstyl([], [])
# plcol0(1)
# pllab("X Coordinate", "Y Coordinate", "Streamlines of flow")
#
# polar contour examples.
pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
polar()
# pl_setcontlabelparam(0.006, 0.3, 0.1, 1)
# polar()
# potential contour examples.
pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
potential()
# pl_setcontlabelparam(0.006, 0.3, 0.1, 1)
# potential()
# Restore defaults
plcol0(1)
pl_setcontlabelparam(0.006, 0.3, 0.1, 0)
main()
|