File: xw16.py

package info (click to toggle)
plplot 5.3.1-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 26,248 kB
  • ctags: 11,687
  • sloc: ansic: 86,045; xml: 17,249; sh: 12,400; tcl: 8,113; cpp: 6,824; perl: 4,383; python: 3,915; makefile: 2,899; java: 2,788; fortran: 290; sed: 5; awk: 1
file content (181 lines) | stat: -rw-r--r-- 4,903 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from Numeric import *
from plplot import *

NS = 20
NX = 35
NY = 46
PERIMETERPTS = 100

XSPA = 2./(NX-1)
YSPA = 2./(NY-1)

tr = array((XSPA, 0.0, -1.0, 0.0, YSPA, -1.0))

def mypltr(x, y, data):
    result0 = data[0] * x + data[1] * y + data[2]
    result1 = data[3] * x + data[4] * y + data[5]
    return array((result0, result1))
		
def main():

    fill_width = 2
    cont_color = 2
    cont_width = 3

    # Set up data array

    x = (arrayrange(NX) - (NX/2)) / float(NX/2)
    x.shape = (-1,1)
    y = (arrayrange(NY) - (NY/2)) / float(NY/2) - 1.
    zz = -sin(7.*x) * cos(7.*y) + x*x - y*y
    ww = -cos(7.*x) * sin(7.*y) + 2.*x*y
    
    zmin = min(zz.flat)
    zmax = max(zz.flat)

    clevel = zmin + (zmax - zmin) * (arrayrange(NS)+0.5)/NS
    shedge = zmin + (zmax - zmin) * (arrayrange(NS+1))/NS

    # Build the identity transformation between grid and world coordinates
    # using mypltr.
    # Note that *for the given* tr, mypltr(i,j,tr)[0] is only a function of i
    # and mypltr(i,j,tr)[1] is only function of j.
    xg0 = mypltr(arange(NX),0,tr)[0]
    yg0 = mypltr(0,arange(NY),tr)[1]
	    
    # Build the 1-d coord arrays.

    distort = .4
    
    xx =  xg0
    xg1 = xx + distort * cos( .5 * pi * xx )
    yy =  yg0
    yg1 = yy - distort * cos( .5 * pi * yy )

    # Build the 2-d coord arrays.
    xx.shape = (-1,1)
    xg2 = xx + distort*cos((0.5*pi)*xx)*cos((0.5*pi)*yy)
    yg2 = yy - distort*cos((0.5*pi)*xx)*cos((0.5*pi)*yy)

    # Plot using identity transform

    pladv(0)
    plvpor(0.1, 0.9, 0.1, 0.9)
    plwind(-1.0, 1.0, -1.0, 1.0)
    plpsty(0)

#   Note another alternative to produce the identical result in a different way
#   is to use the command:
#   plshades(zz, -1.0, 1.0, -1.0, 1.0, shedge, fill_width, 1)
#   The above command works because xmin, xmax, ymin, and ymax do an effective
#   linear transformation on the index ranges.  (We could have dropped
#   xmin, xmax, ymin, ymax since the defaults are -1.0, 1.0, -1.0, 1.0, but
#   for pedagogical reasons we left them in.)  The alternative below using 
#   mypltr does the exact same linear transformation because of the way that
#   the tr array has been defined.  Note that when pltr and pltr_data are 
#   defined, xmin, xmax, ymin, ymax are completely ignored so we can drop 
#   them from the argument list.
    plshades(zz, shedge, fill_width, 1, mypltr, tr)

    plcol0(1)
    plbox( "bcnst", 0., 0, "bcnstv", 0., 0 )
    plcol0(2)

    pllab( "distance", "altitude", "Bogon density" )
    
    # Plot using 1d coordinate transform

    pladv(0)
    plvpor(0.1, 0.9, 0.1, 0.9)
    plwind(-1.0, 1.0, -1.0, 1.0)
    plpsty(0)

    plshades(zz, shedge, fill_width, 1, pltr1, xg1, yg1)

    plcol0(1)
    plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
    plcol0(2)
	       
    pllab( "distance", "altitude", "Bogon density" )

    # Plot using 2d coordinate transform

    pladv(0)
    plvpor(0.1, 0.9, 0.1, 0.9)
    plwind(-1.0, 1.0, -1.0, 1.0)
    plpsty(0)

    plshades(zz, shedge, fill_width, 0, pltr2, xg2, yg2)

    plcol0(1)
    plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
    plcol0(2)

    plcont(ww, clevel, pltr2, xg2, yg2)
    pllab( "distance", "altitude", "Bogon density, with streamlines" )

    # Plot using 2d coordinate transform (with contours generated by plshades)

    pladv(0)
    plvpor(0.1, 0.9, 0.1, 0.9)
    plwind(-1.0, 1.0, -1.0, 1.0)
    plpsty(0)

    # Note default cont_color and cont_width are zero so that no contours
    # are done with other calls to plshades.  But for this call we specify
    # non-zero values so that contours are drawn.
    plshades(zz, shedge, fill_width, cont_color, cont_width,\
    0, pltr2, xg2, yg2)

    plcol0(1)
    plbox( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 )
    plcol0(2)

#    plcont(ww, clevel, "pltr2", xg2, yg2, 0)
    pllab( "distance", "altitude", "Bogon density" )

    # Example with polar coordinates that demonstrates python wrap support.

    pladv(0)
    plvpor(0.1, 0.9, 0.1, 0.9)
    plwind(-1.0, 1.0, -1.0, 1.0)

    # Build new coordinate matrices.
    
    r = arrayrange(NX)/(NX-1.)
    r.shape = (-1,1)
    t = (2.*pi/(NY-1.))*arrayrange(NY-1)
    xg = r*cos(t)
    yg = r*sin(t)
    z = exp(-r*r)*cos(5.*pi*r)*cos(5.*t)

    # Need a new shedge to go along with the new data set.

    zmin = min(z.flat)
    zmax = max(z.flat)
    shedge = zmin + ((zmax - zmin)/NS) * (arrayrange(NS+1))

    plpsty(0)

    # Now we can shade the interior region.  Use wrap=2 to simulate additional
    # point at t = 2 pi.
    plshades(z, shedge, fill_width, 0, pltr2, xg, yg, 2)

    # Now we can draw the perimeter.  (If do before, plshades may overlap.)
    t = 2.*pi*arrayrange(PERIMETERPTS)/(PERIMETERPTS-1.)
    px = cos(t)
    py = sin(t)


    plcol0(1)
    plline( px, py )

    # And label the plot.

    plcol0(2)
    pllab( "", "",  "Tokamak Bogon Instability" )

    # Restore defaults
    plcol0(1)

main()